請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39395
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 許銘熙(Ming-Hsi Hsu) | |
dc.contributor.author | Ming-Chun Tsao | en |
dc.contributor.author | 曹明君 | zh_TW |
dc.date.accessioned | 2021-06-13T17:27:31Z | - |
dc.date.available | 2013-07-25 | |
dc.date.copyright | 2011-07-25 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-07-13 | |
dc.identifier.citation | 1.Barth, A., Montana, A., and Toth, E., 2002. Neural networks and non-parametric methods for improving real-time flood forecasting through conceptual hydrological models. Hydrology and Earth System Sciences, 6(4), pp.627-640.
2.Burgers, G., Leeuwen, V.J.P., and Evensen, G., 1998. Analysis Scheme in the Ensemble Kalman Filter. American Meteorological Society. Volume 126, pp.1719-1724 3.Chen, S.T., and Yu, P.S., 2007. Real-time probabilistic forecasting of flood stages. Journal of Hydrology, 340, pp.63-77 4.Chang, F.J., Chang, L.C., and Huang, H.L., 2002. Real time recurrent learning neural network for stream flow forecasting. Hydrological Processes, 16, pp.2577-2588. 5.Damle, C., and Yalcin, A., 2007. Flood prediction using Time Series Data Mining. Journal of Hydrology, 333, pp.305-316 6.Evensen, G., 2003 The Ensemble Kalman Filter:theoretical formulation and practical implementation. Ocean Dynamics , 53 , pp.343-367. 7.Forster, S., Kneis, D., Gocht, M., and Bronstert, A., 2005. Flood risk reduction by the use of retention areas at Elbe River. Journal of Hydraulic Research de Recherch | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39395 | - |
dc.description.abstract | 臺灣地處西太平洋亞熱帶地區,氣候型態深受季風、颱風之影響,
平均年降雨量約為2500毫米,約世界平均值的2.6倍。由於臺灣山區地形之坡度十分陡峻,因此有豐沛的降雨量就會引發下游地區之洪水災害,造成極大的損失。尤其首善之都臺北位於淡水河流域,為臺灣經濟之重鎮。本研究主要在建立一個淡水河流域洪水位預報模式,可迅速準確的提供預報洪水位,以減少颱風洪水所帶來的災害與損失。 本研究以動力波預報初始值修正模式為基礎,並整合類神經網路(Artificial Neural Network, ANN),並且統計出過去幾場颱風事件對於類神經網路預報未來1至3小時水位之誤差,以卡門濾波修正類神經網路的預報值,而後以系集卡門濾波(Ensemble Kalman Filter, EnKF)作資料同化,結合觀測值更新河川的水位,以更準確的預報值作為模式預報的目標值,建立一套淡水河流域之河川洪水預報模式,已做為發布洪水警報、淹水疏散及防救災應變措施之參考。 以卡門濾波之方法更新類神經網路預報值,再以系集卡門濾波整合變量流模式做為洪水預報。模擬結果顯示,由於卡門濾波法增加了誤差統計之特性,因此可提升洪水預報的準確性,並且有效降低誤差隨著預報時間擴散的程度。故本研究的成果確實可在颱風期間提供更為合理及準確的河川洪水資訊。 | zh_TW |
dc.description.abstract | Taiwan is located on subtropical area of the west Pacific Ocean. The weather patterns have affected by the monsoon and typhoons. The averaged annual rainfall is about 2500 millimeter which is about 2.6 times of the averaged precipitation over the world. The terrain’s steep slope of mountainous areas and heavy rainfall usually cause flooding disaster to make enormous losses in downstream plain where high-density population located. Taipei city where is situated at the Tanshui river basin is the largest city in Taiwan. A flood forecasting model for Tanshui river has been developed in this study to offer a precise flood stage forecast in advance for flood-damaged mitigation.
The flood forecasting model integrated the dynamic routing methods with initial value correction and the artificial neural network(ANN) techniques. The statistical quantities are obtained by the ANN results of predicted water stages with 1-3 hours lead time for several typhoons in the past. The Kalman filter is employed to correct ANN prediction values. The stages predicted with 1-3 hours lead time by Kalman filter are taken as the target values applying in flood forecasting model. Then the ensemble Kalman filter (EnKF) river flood forecasting model is developed to provide accurate and detailed flood information for the Tanshui basin at typhoon period. The flood forecasts can be used for flood alert, evacuation and emergency response. The study uses the Kalman filter to correct ANN prediction value and the ensemble Kalman filter for data assimilation. The simulated results show that the present model can be effectively to improve the accuracy of flood forecasting and reduce the error propagation with the forecasting lead time. The study can provide more accurate and reasonable flood stages during typhoons period. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T17:27:31Z (GMT). No. of bitstreams: 1 ntu-100-R98622008-1.pdf: 1437442 bytes, checksum: 2eb28ae019364c72ba3eb969c9ce9ae7 (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 謝 誌 I
摘 要 II ABSTRACT III 目 錄 V 表目錄 IX 圖目錄 XI 第一章 緒 論 1 1.1 研究目的 1 1.2 研究方法 2 1.3 本研究組織 4 第二章 文獻回顧 7 2.1 卡門濾波之相關研究 7 2.2 類神經網路之相關研究 8 2.3 河川變量流模式之相關研究 12 第三章 模式理論 19 3.1 類神經網路 19 3.2 卡門濾波器 21 3.3 系集卡門濾波器 25 3.3.1 系集與樣本協方差矩陣 25 3.3.2 分析與預報方程 26 3.3.3 系集平方根濾波器 27 3.3.4 協方差擴張 28 3.3.5 初始系集產生方式 29 3.4 河川洪水位預報模式 31 3.4.1 初始值修正之動力波模式 31 3.4.2 整合類神經網路水位預報之洪水演算模式 34 3.4.3 卡門濾波修正類神經網路未來時刻預報值 35 3.4.4 系集卡門濾波結合變量流模式 36 第四章 研究區域 39 4.1 研究區域概述 39 4.2 地文資料 40 4.2.1 河道斷面 40 4.2.2 堤防高程 40 4.2.3 曼寧係數 41 4.3 水文資料 41 4.3.1 水文監測 41 4.3.2 上游邊界及河口潮位 42 第五章 結果與討論 43 5.1 過去颱洪事件類神經網路水位預報統計量 44 5.2 應用卡門濾波修正類神經網路預報值(ANN+KF) 45 5.2.1 海棠颱風 46 5.2.2 韋帕颱風 46 5.2.3 柯羅莎颱風 47 5.2.4 卡玫基颱風 47 5.3 河川洪水位預報模式之比較 48 5.3.1 初始值修正預報(初始值修正) 49 5.3.2 系集卡門濾波修正預報(系集卡門濾波) 50 5.3.3 模式之比較 52 5.4 系集卡門濾波預報模式之應用 53 5.4.1 薔蜜颱風模擬結果 53 5.4.2 鳳凰颱風模擬結果 55 5.4.3 辛樂克颱風模擬結果 57 5.4.4 模擬結果比較 59 第六章 結論與建議 61 6.1 結論 61 6.2 建議 62 參考文獻 65 附錄A 本研究之系集卡門濾波執行步驟 151 附錄B 動力波演算模式 153 附錄C 最小平方法 159 附錄D 倒傳遞類神經網路 161 作者簡介 169 | |
dc.language.iso | zh-TW | |
dc.title | 利用系集卡門濾波器建立具資料同化功能之河川洪水預報模式 | zh_TW |
dc.title | A River Flood Forecast Model with Data Assimilation Based on Ensemble Kalman Filter | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 葉克家,張倉榮,鄧慰先 | |
dc.subject.keyword | 卡門濾波,系集卡門濾波,類神經網路,初始值修正,動力波模式,洪水位預報,資料同化, | zh_TW |
dc.subject.keyword | Kalman filter,ensemble Kalman filter,artificial neural network,initial correction,dynamic routing,flood stage forecasting,data assimilation, | en |
dc.relation.page | 169 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2011-07-13 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 生物環境系統工程學研究所 | zh_TW |
顯示於系所單位: | 生物環境系統工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 1.4 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。