請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39374完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳中明(Chung-Ming Chen) | |
| dc.contributor.author | Po-Liang Chen | en |
| dc.contributor.author | 陳博量 | zh_TW |
| dc.date.accessioned | 2021-06-13T17:27:04Z | - |
| dc.date.available | 2006-01-12 | |
| dc.date.copyright | 2005-01-12 | |
| dc.date.issued | 2004 | |
| dc.date.submitted | 2005-01-05 | |
| dc.identifier.citation | [1]Zimmer Y, Tepper R, Akselrod S A two dimensional extension of minimum cross entropy thresholding for the segmentation of ultrasound images. Ultrasound Med Biol 1996; 22: 1183-1190.
[2]Boukerroui D, Basset O, Guerin N, Baskurt A. Multiresolution texture based adaptive clustering algorithm for breast lesion segmentation. Eur J Ultrasound 1998; 8:135-144. [3]Thomas JG, Peters RA, Jeanty P, Automatic segmentation of ultrasound images using morphological operators. IEEE Trans Med Imaging 1991; 10: 180-186. [4]Krivanek A, Sonka M, Ovarian ultrasound image analysis: Follicle segmentation. IEEE Trans Med Imaging 1998; 12: 935-944. [5]Kass M, Witkin A, Ferzopoulos D. Sankes:active contour model [C]. Pro First Int Conf Comput Vision, 1987.259~268. [6]Xu C, Prince JL. Snakes, shapes, and gradient vector flow. IEEE Trans Image Processing 1998; 7: 359-369. [7]Cohen LD, Cohen I. Finite-element methods for active contour models and balloons for 2-D and 3-D images. IEEE Trans Pattern Anal Machine Intel 1993; 15: 1131-1147. [8]Kass M, Witkin A, Terzopoulos D. Snake: Actour Contour Models. Int J Comput Vision 1987; 1: 321-331. [9]Gunn SR, Nixon MS. A robust snake implementation: A dual active contour. IEEE Trans PAMI 1997; 19: 63-68. [10]Kerschner M. Homologous twin snakes integrated in a bundle block adjustment. Proc of Symp on Object Recognition and Scene Classification from Multispectral and Multisensor Pixels 1998. [11]Giraldi GA, Goncalves LM, Oliveira. Dual topologically adaptable snakes. Proc the 5th Joint Conf on Inform Sci 2000; 2: 103-106. [12]John M. Gauch, “Image Segmentation and Analysis via Multiscale Gradient Watershed Hierarchies,” IEEE Transaction on Image Processing, vol. 8 no. 1 January 1999. [13]Luc Vincent and Pierre Soille, “Watersheds in Digital Spaces: An Efficient Algorithm Based on Immersion Simulations,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 13, no. 6, pp583-598, June 1991. [14]Bernard Rosner, “Fundamentals of Biostatistics”, Duxbury, 2000. [15]蕭安廷, “區域單元競爭演算法:超音波影像多目標物分割技術”, 台大醫工所碩士論文,2003. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39374 | - |
| dc.description.abstract | 超音波影像之目標物自動邊緣偵測,可幫助臨床醫師找尋可疑的目標物,節省檢測人員手繪目標物的時間,還可以應用於超音波影像之電腦輔助診斷,新進醫師的輔助教學,對於醫療診斷與教學研究都有幫助。
但是,超音波訊號在物理上有些限制:低對比、高雜訊、斑點(speckle)、假影(artifacts) 、音波穿透現象以及週圍組織相關紋理。這些現象都會導致目標物邊界的模糊而不易識別,為了能找出腫瘤的輪廓邊緣與內部的中隔(septa),避免目標物邊界的分割錯誤或過度分割等問題,我們提出一個以區域單元分割為基礎的能量區域化與中隔保留能力之區域單元競爭演算法。 我們所提出的方法可分為二個主要的步驟:前置分割步驟與區域單元競爭步驟。在前置分割中,利用各種影像濾波器去除雜訊,並且強化目標物的邊界,接著使用分水嶺演算法產生初始的區域單元。區域單元競爭步驟是以區域單元作為區域分割、合併的基本單位,藉由區域能量函數,引導區域單元的競爭過程。 區域能量函數考慮了局部區域、全域區域以及區域相鄰邊界。其競爭機制是以局部相似值保留區域單元間的中隔邊界,並取得局部區域之間的相似度,再利用全域變異值計算區域合併所需付出的代價。 在臨床超音波影像與假體實驗的結果中,我們不僅能夠找出最明顯的目標物,目標物內部的中隔邊界也可以完整的保留下來。此外,我們所提出的方法還擁有多目標物分割和高度彎曲邊界輪廓的能力,這些優點在傳統的主動尋找模型裡是很難做到的,例如:蛇動模型。這些結果也顯示了我們的方法於實際應用的可能性。 | zh_TW |
| dc.description.abstract | Automatic boundary extraction of multiple targets of interest in an ultrasound image can not only help clinicians find out most perceptible objects, but also save sonologists’ time for boundary delineation. Moreover, it is potentially helpful for the novice instruction and medical research.
However, ultrasonic images suffer several physical problems, such as low contrast, high noises, speckle, artifacts, artifacts tissue related textures and so on. These problems either blur the desired boundaries or deteriorate the discriminability of the boundaries. In order to extract the boundaries of multiple targets of interest in a single image, and preserve the septa of objects simultaneously, we propose a new cell-based segmentation method called energy-localized and septa-preserving cell competition algorithm. The new approach consists of two main steps, namely, the pre-segmentation step and the cell competition step. In the pre-segmentation step, linear filters are used to remove various types of noises and enhance boundary information. After that, initial cells are generated by using Watershed transformation. In the cell competition step, cell competitions involving splits and merges are performed based on local energy minimization using cells as the operation units. The cost function is composed of the local similarity and global energy. While the former is associated with local energy between edge segment and its vicinity, the latter is defined by the global variance between two adjacent areas. Local similarity values are used to preserve the septa of targets and estimate local similarity between adjacent areas. Global variance values serve as the resistant force to merge. The experimental results on the clinical ultrasound images and phantom images show that not only have the most perceptible objects of interest been identified, but also the septa of object have been preserved. Moreover, the proposed cell competition has shown to be capable of identifying the highly winding contour, which is not easily captured by the conventional scheme, e.g., the deformable models. The results suggest practical feasibility of the proposed cell competition algorithm to identify multiple targets for ultrasound image segmentation. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T17:27:04Z (GMT). No. of bitstreams: 1 ntu-93-R91548038-1.pdf: 9293727 bytes, checksum: d901b71b5521c0291aca6f7d60891d09 (MD5) Previous issue date: 2004 | en |
| dc.description.tableofcontents | 中文摘要...................................................i
英文摘要..................................................ii 誌謝.....................................................iii 目錄................... ..................................iv 圖表目錄..................................................vi 第一章:緒論 1 1.1 研究動機 1 1.2 研究目的 2 1.3 資料取得 3 1.4 論文架構 3 第二章:文獻回顧 4 2.1 閾值演算法(Thresholding) 5 2.2 群聚分析(Clustering) 6 2.3 數學形態學演算法(Mathematical Morphology) 7 2.4 形變模型(Deformable Model) 8 第三章:前置分割 9 3.1 演算法流程圖 10 3.2 斑點雜訊濾波 12 3.2 梯度圖(Gradient Map) 13 3.3 梯度圖影像校正(Gradient Map Correction) 14 3.3.1 極端界外值(Outlier ) 14 3.3.2 形態學演算法(Morphology) 15 3.4 分水嶺演算法(Watershed Transform) 16 3.4.1 Rainfall simulation and Immersion simulation 17 3.4.2 第二次分水嶺演算法(2nd Watershed Transform) 17 第四章:區域單元競爭演算法 19 4.1 合併與分割的限制條件 20 4.2 Two sample t test 23 4.3 區域能量函數(Local Energy ) 24 4.3.1局部相似值(Local Similarity Value) 24 4.3.2全域變異值(Global Variance Value) 31 4.3.3正規化(Normalization) 35 4.3.4區域能量函數最小化(Local Energy Minimization) 36 4.4區域單元競爭的執行方式 38 4.4.1區域單元之間的相鄰關係(Cell-to-Cell Relation) 38 4.4.2區域單元與區域之間的相鄰關係(Cell-to-Region Relation) 39 4.4.3合併與分割演算法(Merging/splitting Algorithm) 42 第五章:結果與討論 48 5.1 影像來源與系統參數設定 48 5.2 超音波乳房腫瘤影像分割結果 50 5.3 假體目標物分割結果 85 5.4 討論 98 第六章:結論與未來研究方向 101 參考文獻 102 | |
| dc.language.iso | zh-TW | |
| dc.subject | 區域能量函數 | zh_TW |
| dc.subject | 超音波影像 | zh_TW |
| dc.subject | 分水嶺轉換 | zh_TW |
| dc.subject | 區域單元競爭 | zh_TW |
| dc.subject | 中隔 | zh_TW |
| dc.subject | Ultrasound Images | en |
| dc.subject | Watershed Transform | en |
| dc.subject | Septa | en |
| dc.subject | Localized Energy Function | en |
| dc.subject | Cell Competition | en |
| dc.title | 能量區域化與具中隔保留能力之區域單元競爭演算法 | zh_TW |
| dc.title | Energy-localized and Septa-preserving Cell Competition Algorithm | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李百祺(Pai-Chi Li),周宜宏(Yi-Hong Chou) | |
| dc.subject.keyword | 超音波影像,區域能量函數,分水嶺轉換,區域單元競爭,中隔, | zh_TW |
| dc.subject.keyword | Watershed Transform,Localized Energy Function,Cell Competition,Ultrasound Images,Septa, | en |
| dc.relation.page | 102 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-01-06 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-93-1.pdf 未授權公開取用 | 9.08 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
