Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39368
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor管傑雄(Chieh-Hsiung Kuan)
dc.contributor.authorWen-Hsing Hsiehen
dc.contributor.author謝文興zh_TW
dc.date.accessioned2021-06-13T17:26:57Z-
dc.date.available2008-01-11
dc.date.copyright2005-01-11
dc.date.issued2005
dc.date.submitted2005-01-11
dc.identifier.citation[1] K. von Klitzing, G. Dorda, and M. Pepper. New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance. Phys.Rev. Lett., 45:494-497, 1980.
[2] R. E. Prange and S. M. Girvin. The quantum Hall effect. Springer-Verla, 1987.[3] J. Singh. Physics of semiconductors and their heterostructures. McGRAW-Hill,Inc., 1993.
[4] L. W. Engel, D. Shahar, C. Kurdak, and D. C. Tsui. Microwave frequency dependence of integer quantum hall effect: evidence for finite-frequency scaling. Phys.Rev. Lett., 71:2638-2643, 1993.
[5] B. Huckestein. Scaling theory of the integer quantum hall effect. Rev. Mod. Phys.,67:357-396, 1995.
[6] M. Dobers, K. v. Klitzing, and G.Weimann. Electron-spin resonance in the two-dimensional electron gas of GaAs/AlxGa1¡xAs heterostructures. Phys. Rev. B,38:5453-5456, 1988.
[7] M. A. Zudov, R. R. Du, J. A. Simmons, and J. L. Reno. Shubnikovvde haas-likeoscillations in millimeterwave photoconductivity in a high-mobility two-dimensionalelectron gas. Phys. Rev. B, 64:R201311-R201314, 2001.
[8] M. A. Zudov, R. R. Du, L. N. Pfeiffer, and K.W.West. Evidence for a new dissipa-tionless effect in 2d electronic transport. Phys. Rev. Lett., 90:46807-46810, 2003.
[9] P. D. Ye, L. W. Engel, D. C. Tsui, R. M. Lewis, L. N. Pfeiffer, and K. West.Correlation lengths of the wigner-crystal order in a two-dimensional electron systemat high magnetic field. Phys. Rev. Lett., 89:176802-176805, 2002.
[10] F. Hohls, U. Zeitler, and R. J. Haug. High frequency conductivity in the quantum Hall regime. Phys. Rev. Lett., 86:5124-5147, 2001.
[11] R. M. Lewis and J. P. C. Frequency scaling of microwave conductivity in the integerquantum hall effect minima. Phys. Rev. B, 64:73310-73313, 2001.
[12] D. B. Mast, A. J. Dahm, and A. L. Fetter. Observation of bulk and edge magnetoplasmons in a two-dimensional electron fluid. Phys. Rev. Lett., 54:1706-1709,1985.
[13] A. L. Fetter. Edge magnetoplasmons in a bounded two-dimensional electron fluid.Phys. Rev. B, 32:7676-7684, 1985.
[14] A. L. Fetter. Edge magnetoplasmons in a two-dimensional electron fluid confinedto a half-plane. Phys. Rev. B, 33:3717-3723, 1986.
[15] A. L. Fetter. Magnetoplasmons in a two-dimensional electron fluid: Disk geometry.
Phys. Rev. B, 33:5221-5227, 1986.
[16] V. A. Volkov and S. A. Mikhailov. Theory of edge magnetoplasmons in a two-dimensional electron gas. JETP Lett., 42:556-560, 1985.
[17] V. A. Volkov and S. A. Mikhailov. Edge magnetoplasmons under conditions of the quantum Hall effect. JETP Lett., 44:655-659, 1986.
[18] V. A. Volkov and S. A. Mikhailov. Edge magnetoplasmons: low frequency weakly damped excitations in inhomogeneous two-dimensional electron systems. Sov. Phys. JEPT, 67:1639-1653, 1988.
[19] T. Demel, D. Heitmann, P. Grambow, and K. Ploog. One-dimensional plasmons in AlGaAs/GaAs quantum wires. Phys. Rev. Lett., 66:2657-2660, 1991.
[20] I. M. Grodnenskii, A. S. Rudenko, A. Y. Kamaev, E. P. Krasnoperov, D. Heitmann, K. von Klitzing, and K. Ploog. Low-frequency magnetoplasma excitations in GaAs/AlGaAs quantum wires. JETP Lett., 58:60-65, 1993.
[21] S. A. Mikhailov. Low-frequency dynamics of quantum-wire arrays in a strong magnetic field. JEPT lett., 57:586-590, 1993.
[22] I. Grodnensky, D. Heitmann, K. v. Klitzing, K. Ploog, A. Rudenko, and A. Kamaev. Edge-magnetoplasma excitations in GaAs/AlxGa1¡xAs quantum wires. Phys. Rev. B, 49:10778-10781, 1994.
[23] H. L. Zhao, Y. Zhu, L. H. Wang, and S. C. Feng. Magnetoplasmons in a quasi-one-dimensional quantum wire. J. Phys. Condens. Matter, 6:1685-1694, 1994.
[24] L. Wendler and V. G. Grigoryan. Resonance and fine-structure effects in the spectrum of magnetoplasmons in quantum-well wires. Solid State Communications, 98:683-687, 1996.
[25] W. R. Frank, A. O. Govorov, J. P. Kotthaus, C. Steinebach, V. Gudmundsson, W. Hansen, and M. Holland. Magnetoplasmon mode in connected quantum-wire pairs. Phys. Rev. B, 55:R1950-R1953, 1997.
[26] M. Bayer, Ch. Schlier, Ch. Greus, A. Forchel, S. Benner, and H. Haug. Many-body effects in the quasi-one-dimensional magnetoplasma. Phys. Rev. B, 55:13180-13192, 1997.
[27] Florent Perez, Sylvie Zanier, Sophie Hameau, Bernard Jusserand, Yves Guldner, Antonella Cavanna, Laurence Ferlazzo-Manin, and Bernard Etienne. Lateral electron confinement in narrow deep etched wires. Appl. Phys. Lett., 72:1368-1370, 1998.
[28] L. Wendler and V. G. Grigoryanb. Theory of magneto-optical absorption of the quasi-one-dimensional electron gas. Physica B, 245:127-156, 1998.
[29] Florent Perez, Bernard Jusserand, and Bernard Etienne. Plasmons and the quantum limit in semiconductor wires. Phys. Rev. B, 60:13310-13313, 1999.
[30] B. P. van Zyl and E. Zaremba. Magnetoplasmon excitations in an array of periodically modulated quantum wires. Phys. Rev. B, 63:245317-245322, 2001.
[31] T. Demel, D. Heitmann, P. Grambow, and K. Ploog. Nonlocal dynamic response and level crossings in quantum-dot structures. Phys. Rev. Lett., 64:788-791, 1990.
[32] K. Bollweg, T. Kurth, D. Heitmann, V. Gudmundsson, E. Vasiliadou, P. Grambow, and K. Eberl. Detection of compressible and incompressible states in quantum dots and antidots by far-infrared spectroscopy. Phys. Rev. Lett., 76:2774-2777, 1996.
[33] Z. L. Ye and E. Zaremba. Magnetoplasma excitations in anharmonic electron dots. Phys. Rev. B, 50:17217-17229, 1994.
[34] A. A. Andreev, Y. M. Blanter, and Y. E. Lozovik. Microscopic theory of excitations of a quantum-dot in strong magnetic field. Solid State Commun., 91:581-585, 1994.
[35] C. R. Proetto. Dot and antidot edge magnetoplasmons for a two-dimensional electron gas in a ring geometry. Phys. Rev. B, 46:16174-16177, 1992.
[36] C. Dahl, J. P. Kotthaus, H. Nickel, and W. Schlapp. Magnetoplasma resonances in two-dimensional electron rings. Phys. Rev. B, 48:15480-15483, 1993.
[37] E. Zaremba. Magnetoplasma excitations in electron rings. Phys. Rev. B, 53:10512-10515, 1996.
[38] F. A. Reboredo and C. R. Proetto. Magnetoplasmons in a ring-shaped two-dimensional electron gas. Phys. Rev. B, 53:12617-12620, 1996.
[39] K. Kern, D. Heitmann, P. Grambow, Y. H. Zhang, and K. Ploog. Collective excitations in antidots. Phys. Rev. Lett., 66:1618-1621, 1991.
[40] S. A. Mikhailov and V. A. Volkov. Theory of electromagnetic response and collective excitations in antidots. Phys. Rev. B, 52:17260-17268, 1995.
[41] S. A. Mikhailov. Theory of electromagnetic response and collective excitations of a square lattice of antidots. Phys. Rev. B, 54:R14293-R14296, 1996.
[42] I. M. Grodnensky, D. Heitmann, K. von Klitzing, and A. Y. Kamaev. Dynamic response of a two-dimensional electron system in a strong magnetic field. Phys. Rev. B, 44:1946-1949, 1991.
[43] V. I. Talyanskii, A. V. Polisski, D. D. Arnone, M. Pepper, C. G. Smith, D. A. Ritchie, J. E. Frost, and G. A. C. Jones. Spectroscopy of a twodimensional electron gas in the quantum-Hall-effect regime by use of low-frequency edge magnetoplasmons. Phys. Rev. B, 46:12427-12432, 1992.
[44] V. I. Talyanskii, M. Y. Simmons, J. E. F. Frost, D. A. Ritchie M. Pepper, A. C. Churchill, and G. A. C. Jones. Experimental investigation of the damping of low-frequency edge magnetoplasmons in GaAs/AlxGa1¡xAs heterostructures. Phys.Rev. B, 50:1582-1587, 1994.
[45] C. Dahl, S. Manus, J. P. Kotthaus, H. Nickel, and W. Schlapp. Edge magnetoplasmons in single two-dimensional electron disks at microwave frequencies: Determination of the lateral depletion length. Appl. Phys. Lett., 66:2271-2273, 1995.
[46] Manvir S. Kushwaha. Plasmons and magnetoplasmons in semiconductor heterostructures. Surface Science Reports, 41:1-416, 2001.
[47] L. V. Kulik, S. V. Tovstonog, V. E. Kirpichev, I. V. Kukushkin, W. Dietsche, M. Hauser, and K. v. Klitzing. Symmetry driven plasmon transformations in a bilayer electron system. Phys. Rev. B, 70:33304-33307, 2004.
[48] P. K. H. Sommerfeld, R. W. van der Heijden, and F. M. Peeters. Symmetry breaking of the admittance of a classical two-dimensional electron system in a magnetic field. Phys. Rev. B, 53:13250-13253, 1996.
[49] R. C. Ashoori, H. L. Stormer, L. N. PfeiffervK. W. Baldwin, and K. West. Edge magnetoplasmons in the time domain. Phys. Rev. B, 45:3894-3897, 1992.
[50] N. B. Zhitenev, R. J. Haug, K. von Klitzing, and K. Eberl. Experimental determination of the dispersion of edge magnetoplasmons confined in edge channels. Phys. Rev. B, 49:7809-7812, 1994.
[51] P. Hawker, P. F. Lenne, M. Tonouchi, V. W. Rampton, C. J. Mellor, and M. Henini. Surface-acoustic-wave absorption by edge magnetoplasmons in the 2DHG at a GaAs/AlGaAs heterojunction. Physica B, 194:419-420, 1994.
[52] M. Tonouchi, P. Hawker, M. Henini, and V. W. Rampton. Classical edge magnetoplasmons in GaAs/AlGaAs two-dimensional hole system. Jap. J. Appl. Phys.,34:L68-L71, 1995.
[53] L.W. Engel, C.¡C. Li, D. Shahar, D.C. Tsui, and M. Shayegan. Microwave resonances in low-filling insulating phase of two-dimensional electron system. Solid State Commun., 104:167-171, 1997.
[54] C.¡C. Li, L.W. Engel, D. Shahar, D.C. Tsui, and M. Shayegan. Microwave conduc-
tivity resonance of two-dimensional hole system. Phys. Rev. Lett., 79:1353-1356, 1997.
[55] C.-C. Li, J. Yoon, L.W. Engel, D. Shahar, D.C. Tsui, and M. Shayegan. Microwave
resonance and weak pinning in two-dimensional hole systems at high magnetic fields. Phys. Rev. B, 61:10905-10908, 2000.
[56] R. M. Lewis, P. D. Ye, L. W. Engel, D. C. Tsui, L. N. Pfeiffer, and K. W. West. Microwave resonance of the bubble phases in 1/4 and 3/4 filled high landau levels. Phys. Rev. Lett., 89:136804-136807, 2002.
[57] Y. Chen, R. M. Lewis, L. W. Engel, D. C. Tsui, P. D. Ye, L. N. Pfeiffer, and K. W. West. Microwave resonance of the 2d wigner crystal around integer landau fillings. Phys. Rev. Lett., 91:16801-16804, 2003.
[58] P. D. Ye, L. W. Engel, D. C. Tsui, J. A. Simmons, J. R. Wendt, G. A. Vawter, and J. L. Reno. High magnetic-field microwave conductivity of two-dimensional
electrons in an array of antidots. Phys. Rev. B, 65:121305-121308, 2002.
[59] Roland E. Best. Phase-Locked Loops. McGraw-Hill, Inc., 5th ed. edition, 2003.
[60] A. Wixforth, J. Scriba, M. Wassermeier, J. P. Kotthaus, G. Weimann, and W. Schlapp. Surface acoustic waves on GaAs/AlxGa1¡xAs heterostructures. Phys. Rev. B, 40:7874-7877, 1989.
[61] W. H. Hsieh, C. H. Kuan, Y. W. Suen, S. Y. Chang, L. C. Li, B. C. Lee, and C. P. Lee. High-sensitivity microwave vector detection at extremely low-power levels for low-dimensional electron systems. Appl. Rev. Lett., 85:4196-4198, 2004.
[62] Y. W. Suen, W. H. Hsieh, C. L. Chen, L. C. Li, and C. H. Kuan. Instrumentation of a high-sensitivity microwave vector detection system for low-temperature applications. submitted to Rev. of Sci. Instr.
[63] SR830 from Stanford Research Systems, Inc., Sunnyvale, CA.
[64] The sample (serial number: lm3979) was grown by Prof. C. P. Lee's group in National Chung Tung University.
[65] Agilent Headquarters 395 Page Mill Rd., P.O. Box #10395, Palo Alto, CA 94303.
[66] I. Bahl and P. Bhartia. Microwave solid state circuit design. John Wiley & Sons, Inc., 2nd edition, 2003.
[67] David K. Gheng. Field and wave electromagnetics. Addison-Wesley, 1989.
[68] D. G. Ployakov and B. I. Shklovskii. Conductivity-peak broadening in the quantum Hall regime. Phys. Rev. B, 48:11167-11170, 1993.
[69] D. G. Ployakov and B. I. Shklovskii. Variable range hopping as the mechanism of the conductivity peak broadening in the quantum hall regime. Phys. Rev. Lett., 70:3796-3799, 1993.
[70] D. Shahar, D. C. Tsui, M. Shayegan, E. Shimshoni, and S. L. Sondhi. A different view of the quantum hall plateau-to-plateau transitions. Phys. Rev. Lett., 79:479- 482, 1997.
[71] Ziqiang Wang, Matthew P. A. Fisher, S. M. Girvin, and J. T. Chalker. Short- range interactions and scaling near integer quantum hall transitions. Phys. Rev. B,
61:8326-8333, 2000.
[72] B. Huckestein and M. Backhaus. Integer quantum hall effect of interacting electrons: Dynamical scaling and critical conductivity. Phys. Rev. Lett., 82:5100-5103, 1999.
[73] The sample structures were grown by Prof. C. P. Lee's group in National Chiao Tung
University. The serial numbers of InGaAs/GaAs quantum well and GaAs/AlGaAs heterostructure are lm4116 and lm3979.
[74] F. Hohls, U. Zeitler, R. J. Haug, R. Meisels, K. Dybko, and F. Kuchar. Dynamical scaling of the quantum hall plateau transition. Phys. Rev. Lett., 89:276801-276804, 2002.
[75] Y. W. Suen, W. H. Hsieh, L. C. Li, T. C. Wan, C. H. Kuan, S. D. Lin, C. P. Lee, and H. H. Cheng. Using a pulsed phase lock loop to detect high-frequency magnetotransport properties of two-dimensional electron systems. In Proceedings of the 15th international conference on High Magnetic Fields in Semiconductor Physics, pages B-48 poster, Oxford, 2002.
[76] For calculating of real part and imagine part of the conductivity, the values used in this thesis was shown as (1) deff = 23um; (2) l = 2.25cm; (3) L/vL = 47.3ns denotes the time delay of the whole system.
[77] T. Demel, D. Heitmann, P. Grambow, and K. Ploog. Far-infrared response of one-dimensional electronic systems in single- and two-layered quantum wires. Phys. Rev. B, 38:12732-12736, 1988.
[78] U. Wulf, E. Zeeb, P. Gies, R. R. Gerhardts, and W. Hanke. Magnetoplasmons in an electron gas at the crossover from two- to one-dimensional behavior. Phys. Rev. B, 1990.
[79] D. C, Glattli, E. Y. Andrei, G. Deville, J. Poitrenaud, and F. I. B. Williams. Dynam-
ical hall effect in a two-dimensional classical plasma. Phys. Rev. Lett., 54:1710-1713, 1985.
[80] M. Wassermeier, J. Oshinowo, J. P. Kotthaus, A. H. MacDonald, C. T. Foxon, and J. J. Harris. Edge magnetoplasmons in the fractional-quantum-Hall-effect regime. Phys. Rev. B, 41:10287-10290, 1990.
[81] U. Zulicke, Robert Bluhm, V. Alan Kostelecky, and A. H. MacDonald. Edge-magnetoplasmon wave-packet revivals in the quantum-hall effect. Phys. Rev. B,
55:9800-9803, 1997.
[82] U. Zulicke, A. H. MacDonald, and M. D. Johnson. Observability of counterpropagating modes at fractional quantum hall edges. Phys. Rev. B, 58:13778-13781, 1998.
[83] C. Dahl, F. Brinkop, and A. Wixforth. Dimensional resonances in elliptic electrondisks. Solid State Commun., 80:673-676, 1991.
[84] The etching solvate is H2SO4 :H2O2 :H2O= 1 : 8 : 40. The etching rate of this solvate is about 220 ºA/sec.
[85] K. K. Choi, D. C. Tsui, and K. Alavi. Experimental determination of the edge depletion width of ahe two¡dimensional electron gas in GaAs/AlxGa1¡xAs. Appl. Phys. Lett., 50:110-112, 1987.
[86] Thurlby Thandar Instruments Ltd., Huntingdon, Cambridgeshire PE29 7DR, U.K.
[87] Mini-Circuits, Brooklyn, NY.
[88] Maxim Integrated Products, Sunnyvale, CA.
[89] Intersil Corporation, Milpitas, CA.
[90] Analog Devices, Inc., Norwood, MA.
[91] In this design, we need to insert a TTL invertor between the TTL1 and the controllead of the analog switch.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39368-
dc.description.abstractIn this thesis, I report a systematic studies of the high-frequency magnetotransport properties of low-dimensional electron systems (LDESs) in low-temperature. One of our most important achievement is the development of an ultra-high-sensitivity microwave vector detection system, which delivers an extremely low power level signal to the LDESs under test. The high sensitivity and resolution of our detection system, which have achieved 0.005% and 0.001degree resolutions in amplitude and phase variations at 10 GHz with an average signal power below -100 dBm, together with the coplanar-wave-guide broad band sensor, allow us to probe the very tiny change of the microwave signal due to the presence of the LDES and to explore the underlying new physics. From the measured phase variation, we can distinguish a very tiny change in the induced dipole moment of each quantum wire. Our system outperforms most of the commercial vector network analyzers (VNAs).
Both the real and the imaginary parts of high-frequency conductivity of two-dimensional electron systems in two different heterostructures especially near the center of the integer quantum Hall (IQH) plateau at the frequency range from 100 MHz up to 18 GHz are carefully investigated. Studies of the frequency dependence of real part of the complex conductivity near the center of the IQH plateau shows an
interesting power law dependence between the localization length and the magnetic field difference away from the plateau center with an exponent close to 2.3.
The other important part of this thesis is the high-frequency magnetotransport properties of carriers in a quantum-wire (QW) array at 0.3K. The QW array consists of 7200 QWs fabricated from a 2DES in a GaAs/AlGaAs heterostructure by e-beam lithography and wet etching processes. These QWs are embedded in the gap of a 50 ohm meandering coplanar waveguide (CPW). The microwave spectrum of this QW array is carefully studied. The results exhibit a series of absorption dips, whose frequencies show a bell-shaped magnetic-field dependence corresponding to each IQH plateau. This bell-shaped dependence can be attributed to edge magnetoplasma (EMP) excitations of the QW array, and has been theoretically predicted. Besides that, we also observe a strong absorption extending from the top of each bell-shaped spectrum to the side IQH plateau as the frequency increases, and map out the transition behavior from EMP absorption region to IQHE-typed or Shubnikov-de-Hass-(SdH)-typed adsorption. This observation reveals that the IQH and SdH oscillations are screened at frequencies below the EMP frequencies. At the end, I will present the resonance peaks at fields below that SdH oscillations start. These adsorption peaks may be attributed to the hybrid modes of the cyclotron resonance and the two-dimensional bulk plasma.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T17:26:57Z (GMT). No. of bitstreams: 1
ntu-94-D88921005-1.pdf: 8454641 bytes, checksum: da2c697e569996e2b0c2d2aa2f41eae4 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontentsAbstract iii
Acknowledgements v
List of Abbreviations and Symbols vi
Contents vii
List of Figures x
List of Tables xvii
1 Intorduction 1
1.1 Brief review of 2DESs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 High-frequency magnetotransport properties of LDESs . . . . . . . . . . 3
1.2.1 High-frequency magnetotransport properties of 2DESs . . . . . . 3
1.2.2 Edge magnetoplasma excitations in LDESs . . . . . . . . . . . . . 4
1.3 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2 Ultra-high-sensitivity microwave vector detection for probing LDESs 8
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Design of the microwave vector detection system . . . . . . . . . . . . . . 10
2.3 Performance of the detection system . . . . . . . . . . . . . . . . . . . . 11
2.4 Using the detection system to probe a quantum-wire array . . . . . . . . 11
2.5 Measurement of the susceptibility of a quantum wire . . . . . . . . . . . 13
2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
vii
3 Localizations lengths of 2DESs in IQH plateau regions 20
3.1 Scaling behaviors of a 2DES . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Sample preparations and experimental set-up . . . . . . . . . . . . . . . 23
3.2.1 Sample preparations . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.2 Experimental set-up . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Experimental results and discussions . . . . . . . . . . . . . . . . . . . . 26
3.3.1 f-dependence scaling behaviors for lm4116c4 . . . . . . . . . . . . 26
3.3.2 T-dependence behaviors for lm4116c6 . . . . . . . . . . . . . . . . 29
3.3.3 The e®ect of edge on the scaling behaviors in IQH plateaus . . . . 29
3.3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4 Edge magnetoplasma excitations in quantum-wire arrays 61
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.1.1 Classical theory of EMP in a quantum wire array . . . . . . . . . 62
4.1.2 Properties of EMPs in LDESs . . . . . . . . . . . . . . . . . . . . 64
4.2 Sample preparation and experimental set-up . . . . . . . . . . . . . . . . 65
4.2.1 Sample preparations . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2.2 Experimental set-up . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.3 Experimental results and discussions . . . . . . . . . . . . . . . . . . . . 67
4.3.1 Dynamic properties of EMP excitations for lm3979c6 in IQHE
regimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.3.2 High-frequency absorption at low magnetic ‾elds . . . . . . . . . 70
4.4 conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5 Conclusions 92
5.1 Ultra-high-sensitivity microwave vector detection for probing LDESs . . . 92
5.2 Localization lengths of 2DESs in IQH plateau regions . . . . . . . . . . . 93
5.3 Edge magnetoplasma excitations in quantum-wire arrays . . . . . . . . . 93
viii
A Instrumentation of a high-sensitivity
microwave vector detection system 95
A.1 System and circuit designs . . . . . . . . . . . . . . . . . . . . . . . . . . 95
A.1.1 Description of the Complete System . . . . . . . . . . . . . . . . 95
A.1.2 Pulse Handling Circuits and the Integrator . . . . . . . . . . . . . 97
A.1.3 Microwave Modules . . . . . . . . . . . . . . . . . . . . . . . . . . 98
A.2 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
A.2.1 Response of the PLL . . . . . . . . . . . . . . . . . . . . . . . . . 98
A.2.2 Detection Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
B The conductivity of a 2DES 110
B.1 Wave characteristics of a transmission line . . . . . . . . . . . . . . . . . 111
References 115
dc.language.isoen
dc.subject半導體zh_TW
dc.subject異質接面zh_TW
dc.subject磁傳輸zh_TW
dc.subject微波zh_TW
dc.subjecthetetostructureen
dc.subjectmicrowaveen
dc.subjectmagnetotransporten
dc.subjectsemiconductoren
dc.title低維度電子系統的高頻動態磁傳輸特性之研究zh_TW
dc.titleHigh-Frequency Dynamic Magnetotransport Properties of Low-Dimensional Electron Systemsen
dc.typeThesis
dc.date.schoolyear93-1
dc.description.degree博士
dc.contributor.coadvisor孫允武(Yuen-Wuu Suen)
dc.contributor.oralexamcommittee郭華丞(Watson Kuo),簡紋濱(Wen-Bin Jian),孫建文(Kien-Wen Suen),賴聰賢(Tsong-Sheng Lay),陳?東(Chii-Dong Chen),吳仲卿(Jong-Ching Wu)
dc.subject.keyword磁傳輸,微波,異質接面,半導體,zh_TW
dc.subject.keywordsemiconductor,microwave,magnetotransport,hetetostructure,en
dc.relation.page13
dc.rights.note有償授權
dc.date.accepted2005-01-11
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
8.26 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved