Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 漁業科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39343
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李士傑
dc.contributor.authorPei-Jen Wangen
dc.contributor.author王培任zh_TW
dc.date.accessioned2021-06-13T17:26:25Z-
dc.date.available2005-01-27
dc.date.copyright2005-01-27
dc.date.issued2005
dc.date.submitted2005-01-18
dc.identifier.citationAberle, H., Schwartz, H., and Kemler, R., 1996. Cadherin-catenin complex: protein interactions and their implications for cadherin function. J. Cell Biochem. 61, 514-523.
Annila, A., Lehtimaki, J., Mattila, K., Eriksson, J.E., Sivonen, K., Rantala, T.T., and Drakenberg, T., 1996. Solution structure of nodularin. An inhibitor of serine/threonine-specific protein phosphatases. J. Biol. Chem. 271, 16695-16702.
Babb, S.G., Barnett, J., Doedens, A.L., Cobb, N., Liu, Q., Sorkin, B.C., Yelick, P.C., Raymond, P.A., and Marrs, J.A., 2001. Zebrafish E-cadherin: expression during early embryogenesis and regulation during brain development. Dev. Dyn. 221, 231-237.
Babb, S.G. and Marrs, J.A., 2004. E-cadherin regulates cell movements and tissue formation in early zebrafish embryos. Dev. Dyn. 230, 263-277.
Barford, D., 1996. Molecular mechanisms of the protein serine/threonine phosphatases. Trends Biochem. Sci. 21, 407-412.
Batista, T., de, S.G., Suput, J.S., Rahmani, R., and Suput, D., 2003. Microcystin-LR causes the collapse of actin filaments in primary human hepatocytes. Aquat. Toxicol. 65, 85-91.
Becker, K.A. and Hart, N.H., 1996. The cortical actin cytoskeleton of unactivated zebrafish eggs: spatial organization and distribution of filamentous actin, nonfilamentous actin, and myosin-II. Mol. Reprod. Dev. 43, 536-547.
Best, J.H., Pflugmacher, S., Wiegand, C., Eddy, F.B., Metcalf, J.S., and Codd, G.A., 2002. Effects of enteric bacterial and cyanobacterial lipopolysaccharides, and of microcystin-LR, on glutathione S-transferase activities in zebra fish (Danio rerio). Aquat. Toxicol. 60, 223-231.
Botha, N., Gehringer, M.M., Downing, T.G., van, d., V, and Shephard, E.G., 2004a. The role of microcystin-LR in the induction of apoptosis and oxidative stress in CaCo2 cells. Toxicon 43, 85-92.
Botha, N., van, d., V, Downing, T.G., Shephard, E.G., and Gehringer, M.M., 2004b. The effect of intraperitoneally administered microcystin-LR on the gastrointestinal tract of Balb/c mice. Toxicon 43, 251-254.
Brautigan, D.L., 1994. Protein phosphatases. Recent Prog. Horm. Res. 49, 197-214.
Brautigan, D.L., 1995. Flicking the switches: phosphorylation of serine/threonine protein phosphatases. Semin. Cancer Biol. 6, 211-217.
Carmichael, W.W., 1992. Cyanobacteria secondary metabolites--the cyanotoxins. J. Appl. Bacteriol. 72, 445-459.
Carmichael, W.W., 1994. The toxins of cyanobacteria. Sci. Am. 270, 78-86.
Chong, M.W., Gu, K.D., Lam, P.K., Yang, M., and Fong, W.F., 2000. Study on the cytotoxicity of microcystin-LR on cultured cells. Chemosphere 41, 143-147.
Chua, K.L. and Lim, T.M., 2000. Type I and type II cytokeratin cDNAs from the zebrafish (Danio rerio) and expression patterns during early development. Differentiation 66, 31-41.
Cohen, P., 1989. The structure and regulation of protein phosphatases. Annu. Rev. Biochem. 58, 453-508.
Conrad, M., Lemb, K., Schubert, T., and Markl, J., 1998. Biochemical identification and tissue-specific expression patterns of keratins in the zebrafish Danio rerio. Cell Tissue Res. 293, 195-205.
Contin, M.A., Purro, S.A., Bisig, C.G., Barra, H.S., and Arce, C.A., 2003. Inhibitors of protein phosphatase 1 and 2A decrease the level of tubulin carboxypeptidase activity associated with microtubules. Eur. J. Biochem. 270, 4921-4929.
Daggett, D.F., Boyd, C.A., Gautier, P., Bryson-Richardson, R.J., Thisse, C., Thisse, B., Amacher, S.L., and Currie, P.D., 2004. Developmentally Restricted Actin-Regulatory Molecules Control Morphogenetic Cell Movements in the Zebrafish Gastrula. Curr. Biol. 14, 1632-1638.
Dawson, R.M., 1998. The toxicology of microcystins. Toxicon 36, 953-962.
de Figueiredo, D.R., Azeiteiro, U.M., Esteves, S.M., Goncalves, F.J., and Pereira, M.J., 2004. Microcystin-producing blooms--a serious global public health issue. Ecotoxicol. Environ. Saf 59, 151-163.
Ding, W.X., Shen, H.M., Shen, Y., Zhu, H.G., and Ong, C.N., 1998a. Microcystic cyanobacteria causes mitochondrial membrane potential alteration and reactive oxygen species formation in primary cultured rat hepatocytes. Environ. Health Perspect. 106, 409-413.
Ding, W.X., Shen, H.M., Zhu, H.G., and Ong, C.N., 1998b. Studies on oxidative damage induced by cyanobacteria extract in primary cultured rat hepatocytes. Environ. Res. 78, 12-18.
Ding, W.X., Shen, H.M., and Ong, C.N., 2000. Microcystic cyanobacteria extract induces cytoskeletal disruption and intracellular glutathione alteration in hepatocytes. Environ. Health Perspect. 108, 605-609.
Ding, W.X., Shen, H.M., and Ong, C.N., 2001. Critical role of reactive oxygen species formation in microcystin-induced cytoskeleton disruption in primary cultured hepatocytes. J. Toxicol. Environ. Health A 64, 507-519.
Driever, W., Solnica-Krezel, L., Schier, A.F., Neuhauss, S.C., Malicki, J., Stemple, D.L., Stainier, D.Y., Zwartkruis, F., Abdelilah, S., Rangini, Z., Belak, J., and Boggs, C., 1996. A genetic screen for mutations affecting embryogenesis in zebrafish. Development 123, 37-46.
Falconer, I.R. and Yeung, D.S., 1992. Cytoskeletal changes in hepatocytes induced by Microcystis toxins and their relation to hyperphosphorylation of cell proteins. Chem. Biol. Interact. 81, 181-196.
Falconer, I.R., 1999. An overview of problems caused by toxic blue-green algae (cyanobacteria) in drinking and recreational water. Environ. Toxicol. 14, 5-12.
Fischer, W.J. and Dietrich, D.R., 2000. Pathological and Biochemical Characterization of Microcystin-Induced Hepatopancreas and Kidney Damage in Carp (Cyprinus carpio). Toxicol. Appl. Pharmacol. 164, 73-81.
Frangez, R., Zuzek, M.C., Mrkun, J., Suput, D., Sedmak, B., and Kosec, M., 2003. Microcystin-LR affects cytoskeleton and morphology of rabbit primary whole embryo cultured cells in vitro. Toxicon 41, 999-1005.
Garcia, A., Cayla, X., Guergnon, J., Dessauge, F., Hospital, V., Rebollo, M.P., Fleischer, A., and Rebollo, A., 2003. Serine/threonine protein phosphatases PP1 and PP2A are key players in apoptosis. Biochimie 85, 721-726.
Gehringer, M.M., 2004. Microcystin-LR and okadaic acid-induced cellular effects: a dualistic response. FEBS Letters 557, 1-8.
Gotz, J., Probst, A., Mistl, C., Nitsch, R.M., and Ehler, E., 2000. Distinct role of protein phosphatase 2A subunit Calpha in the regulation of E-cadherin and beta-catenin during development. Mech. Dev. 93, 83-93.
Gumbiner, B.M., 1995. Signal transduction of beta-catenin. Curr. Opin. Cell Biol. 7, 634-640.
Guzman, R.E., Solter, P.F., and Runnegar, M.T., 2003. Inhibition of nuclear protein phosphatase activity in mouse hepatocytes by the cyanobacterial toxin microcystin-LR. Toxicon 41, 773-781.
Honkanen, R.E., Zwiller, J., Moore, R.E., Daily, S.L., Khatra, B.S., Dukelow, M., and Boynton, A.L., 1990. Characterization of microcystin-LR, a potent inhibitor of type 1 and type 2A protein phosphatases. J. Biol. Chem. 265, 19401-19404.
Horsfield, J., Ramachandran, A., Reuter, K., LaVallie, E., Collins-Racie, L., Crosier, K., and Crosier, P., 2002. Cadherin-17 is required to maintain pronephric duct integrity during zebrafish development. Mech. Dev. 115, 15-26.
Humpage, A.R. and Falconer, I.R., 1999. Microcystin-LR and liver tumor promotion: Effects on cytokinesis, ploidy, and apoptosis in cultured hepatocytes. Environ. Toxicol. 14, 61-75.
Hunter, T., 1995. Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. Cell 80, 225-236.
Imanishi, S. and Harada, K.i., 2004. Proteomics approach on microcystin binding proteins in mouse liver for investigation of microcystin toxicity. Toxicon 43, 651-659.
Imboden, M., Goblet, C., Korn, H., and Vriz, S., 1997. Cytokeratin 8 is a suitable epidermal marker during zebrafish development. Comptes Rendus de l'Academie des Sciences - Series III - Sciences de la Vie 320, 689-700.
Ito, E., Kondo, F., Terao, K., and Harada, K., 1997. Neoplastic nodular formation in mouse liver induced by repeated intraperitoneal injections of microcystin-LR. Toxicon 35, 1453-1457.
Ito, E., Kondo, F., and Harada, K.i., 2001. Intratracheal administration of microcystin-LR, and its distribution. Toxicon 39, 265-271.
Jacquet, C., Thermes, V., Luze, A.d., Puiseux-Dao, S., Bernard, C., Joly, J.S., Bourrat, F., and Edery, M., 2004. Effects of microcystin-LR on development of medaka fish embryos (Oryzias latipes). Toxicon 43, 141-147.
Keil, C., Forchert, A., Fastner, J., Szewzyk, U., Rotard, W., Chorus, I., and Kratke, R., 2002. Toxicity and microcystin content of extracts from a Planktothrix bloom and two laboratory strains. Water Res. 36, 2133-2139.
Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B., and Schilling, T.F., 1995. Stages of embryonic development of the zebrafish. Dev. Dyn. 203, 253-310.
Ku, N.O., Michie, S.A., Soetikno, R.M., Resurreccion, E.Z., Broome, R.L., and Omary, M.B., 1998. Mutation of a major keratin phosphorylation site predisposes to hepatotoxic injury in transgenic mice. J. Cell Biol. 143, 2023-2032.
Lankoff, A. and Kolataj, A., 2000. Influence of microcystine-YR and nodularin on the activity of some glucosidases in mouse liver. Toxicology 146, 177-185.
Lawton, L.A. and Edwards, C., 2001. Purification of microcystins. J. Chromatogr. A 912, 191-209.
Lee, T.H., Chen, Y.M., and Chou, H.N., 1998. First report of microcystins in Taiwan. Toxicon 36, 247-255.
Leung, C.F., Webb, S.E., and Miller, A.L., 2000. On the mechanism of ooplasmic segregation in single-cell zebrafish embryos. Dev. Growth Differ. 42, 29-40.
Li, X., Liu, Y., and Song, L., 2001. Cytological alterations in isolated hepatocytes from common carp (Cyprinus carpio L.) exposed to microcystin-LR. Environ. Toxicol. 16, 517-522.
Li, X., Liu, Y., Song, L., and Liu, J., 2003. Responses of antioxidant systems in the hepatocytes of common carp (Cyprinus carpio L.) to the toxicity of microcystin-LR. Toxicon 42, 85-89.
Liu, Q., Babb, S.G., Novince, Z.M., Doedens, A.L., Marrs, J., and Raymond, P.A., 2001. Differential expression of cadherin-2 and cadherin-4 in the developing and adult zebrafish visual system. Vis. Neurosci. 18, 923-933.
Liu, Y., Song, L., Li, X., and Liu, T., 2002. The toxic effects of microcystin-LR on embryo-larval and juvenile development of loach, Misguruns mizolepis Gunthe. Toxicon 40, 395-399.
MacKintosh, R.W., Dalby, K.N., Campbell, D.G., Cohen, P.T.W., Cohen, P., and MacKintosh, C., 1995. The cyanobacterial toxin microcystin binds covalently to cysteine-273 on protein phosphatase 1. FEBS Letters 371, 236-240.
Magalhaes, V.F., Marinho, M.M., Domingos, P., Oliveira, A.C., Costa, S.M., Azevedo, L.O., and Azevedo, S.M.F.O., 2003. Microcystins (cyanobacteria hepatotoxins) bioaccumulation in fish and crustaceans from Sepetiba Bay (Brasil, RJ). Toxicon 42, 289-295.
Malbrouck, C., Trausch, G., Devos, P., and Kestemont, P., 2003. Hepatic accumulation and effects of microcystin-LR on juvenile goldfish Carassius auratus L. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 135, 39-48.
Malbrouck, C., Trausch, G., Devos, P., and Kestemont, P., 2004. Effect of microcystin-LR on protein phosphatase activity in fed and fasted juvenile goldfish Carassius auratus L. Toxicon 43, 295-301.
McDermott, C.M., Nho, C.W., Howard, W., and Holton, B., 1998. The cyanobacterial toxin, microcystin-LR, can induce apoptosis in a variety of cell types. Toxicon 36, 1981-1996.
Mikhailov, A., Harmala-Brasken, A.S., Hellman, J., Meriluoto, J., and Eriksson, J.E., 2003. Identification of ATP-synthase as a novel intracellular target for microcystin-LR. Chem. Biol. Interact. 142, 223-237.
Nagafuchi, A. and Takeichi, M., 1989. Transmembrane control of cadherin-mediated cell adhesion: a 94 kDa protein functionally associated with a specific region of the cytoplasmic domain of E-cadherin. Cell Regul. 1, 37-44.
Nelson, W.J. and Nusse, R., 2004. Convergence of Wnt, beta-catenin, and cadherin pathways. Science 303, 1483-1487.
Nishiwaki-Matsushima, R., Ohta, T., Nishiwaki, S., Suganuma, M., Kohyama, K., Ishikawa, T., Carmichael, W.W., and Fujiki, H., 1992. Liver tumor promotion by the cyanobacterial cyclic peptide toxin microcystin-LR. J. Cancer Res. Clin. Oncol. 118, 420-424.
Oberemm, A., Fastner, J., and Steinberg, C.E.W., 1997. Effects of microcystin-LR and cyanobacterial crude extracts on embryo-larval development of zebrafish (Danio rerio). Water Research 31, 2918-2921.
Oberemm, A., Becker, J., Codd, G.A., and Steinberg, C., 1999. Effects of cyanobacterial toxins and aqueous crude extracts of cyanobacteria on the development of fish and amphibians. Environ. Toxicol. 14, 77-88.
Ohta, T., Nishiwaki, R., Yatsunami, J., Komori, A., Suganuma, M., and Fujiki, H., 1992. Hyperphosphorylation of cytokeratins 8 and 18 by microcystin-LR, a new liver tumor promoter, in primary cultured rat hepatocytes. Carcinogenesis 13, 2443-2447.
Pflugmacher, S., Wiegand, C., Oberemm, A., Beattie, K.A., Krause, E., Codd, G.A., and Steinberg, C.E., 1998. Identification of an enzymatically formed glutathione conjugate of the cyanobacterial hepatotoxin microcystin-LR: the first step of detoxication. Biochim. Biophys. Acta 1425, 527-533.
Pietsch, C., Wiegand, C., Ame, M.V., Nicklisch, A., Wunderlin, D., and Pflugmacher, S., 2001. The effects of a cyanobacterial crude extract on different aquatic organisms: evidence for cyanobacterial toxin modulating factors. Environ. Toxicol. 16, 535-542.
Runnegar, M., Berndt, N., Kong, S.M., Lee, E.Y.C., and Zhang, L.F., 1995. In Vivo and in Vitro Binding of Microcystin to Protein Phosphatase 1 and 2A. Biochem. Biophys. Res. Commun. 216, 162-169.
Runnegar, M.T., Gerdes, R.G., and Falconer, I.R., 1991. The uptake of the cyanobacterial hepatotoxin microcystin by isolated rat hepatocytes. Toxicon 29, 43-51.
Schaffeld, M., Knappe, M., Hunzinger, C., and Markl, J., 2003. cDNA sequences of the authentic keratins 8 and 18 in zebrafish. Differentiation 71, 73-82.
Serres, M., Grangeasse, C., Haftek, M., Durocher, Y., Duclos, B., and Schmitt, D., 1997. Hyperphosphorylation of [beta]-Catenin on Serine-Threonine Residues and Loss of Cell-Cell Contacts Induced by Calyculin A and Okadaic Acid in Human Epidermal Cells. Exp. Cell Res. 231, 163-172.
Shapiro, L., Fannon, A.M., Kwong, P.D., Thompson, A., Lehmann, M.S., Grubel, G., Legrand, J.F., ls-Nielsen, J., Colman, D.R., and Hendrickson, W.A., 1995. Structural basis of cell-cell adhesion by cadherins. Nature 374, 327-337.
Solnica-Krezel, L., Stemple, D.L., Mountcastle-Shah, E., Rangini, Z., Neuhauss, S.C., Malicki, J., Schier, A.F., Stainier, D.Y., Zwartkruis, F., Abdelilah, S., and Driever, W., 1996. Mutations affecting cell fates and cellular rearrangements during gastrulation in zebrafish. Development 123, 67-80.
Suchy, F.J., 1993. Hepatocellular transport of bile acids. Semin. Liver Dis. 13, 235-247.
Takeichi, M., 1995. Morphogenetic roles of classic cadherins. Curr. Opin. Cell Biol. 7, 619-627.
Tamura, S., Hanada, M., Ohnishi, M., Katsura, K., Sasaki, M., and Kobayashi, T., 2002. Regulation of stress-activated protein kinase signaling pathways by protein phosphatases. Eur. J. Biochem. 269, 1060-1066.
Teneva, I., Asparuhova, D., Dzhambazov, B., Mladenov, R., and Schirmer, K., 2003. The freshwater cyanobacterium Lyngbya aerugineo-coerulea produces compounds toxic to mice and to mammalian and fish cells. Environ. Toxicol. 18, 9-20.
Theiss, W.C., Carmichael, W.W., Wyman, J., and Bruner, R., 1988. Blood pressure and hepatocellular effects of the cyclic heptapeptide toxin produced by the freshwater cyanobacterium (blue-green alga) Microcystis aeruginosa strain PCC-7820. Toxicon 26, 603-613.
Toivola, D.M., Goldman, R.D., Garrod, D.R., and Eriksson, J.E., 1997. Protein phosphatases maintain the organization and structural interactions of hepatic keratin intermediate filaments. J. Cell Sci. 110 ( Pt 1), 23-33.
Toivola, D.M., Omary, M.B., Ku, N.O., Peltola, O., Baribault, H., and Eriksson, J.E., 1998. Protein phosphatase inhibition in normal and keratin 8/18 assembly-incompetent mouse strains supports a functional role of keratin intermediate filaments in preserving hepatocyte integrity. Hepatology 28, 116-128.
Toivola, D.M. and Eriksson, J.E., 1999. Toxins affecting cell signalling and alteration of cytoskeletal structure. Toxicol. In Vitro. 13, 521-530.
Xie, L., Xie, P., Ozawa, K., Honma, T., Yokoyama, A., and Park, H.D., 2004. Dynamics of microcystins-LR and -RR in the phytoplanktivorous silver carp in a sub-chronic toxicity experiment. Environ. Pollut. 127, 431-439.
Yamashita, K., Yasuda, H., Pines, J., Yasumoto, K., Nishitani, H., Ohtsubo, M., Hunter, T., Sugimura, T., and Nishimoto, T., 1990. Okadaic acid, a potent inhibitor of type 1 and type 2A protein phosphatases, activates cdc2/H1 kinase and transiently induces a premature mitosis-like state in BHK21 cells. EMBO J. 9, 4331-4338.
Zalik, S.E., Lewandowski, E., Kam, Z., and Geiger, B., 1999. Cell adhesion and the actin cytoskeleton of the enveloping layer in the zebrafish embryo during epiboly. Biochem. Cell Biol. 77, 527-542.
Zambrano, F. and Canelo, E., 1996. Effects of microcystin-lr on the partial reactions of the Na+---K+ pump of the gill of carp (Cyprinus carpio linneo). Toxicon 34, 451-458.
Zegura, B., Lah, T.T., and Filipic, M., 2004. The role of reactive oxygen species in microcystin-LR-induced DNA damage. Toxicology 200, 59-68.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39343-
dc.description.abstract微囊藻毒(Microcystin-LR, MC-LR)是一種由淡水藍綠藻產生的毒素,其主要作用在於抑制絲氨酸-酥氨酸蛋白質去磷酸酶(serine/threonine protein phosphatase)1(PP1)及2A(PP2A)之活性。MC-LR可藉由抑制蛋白質去磷酸化而使細胞內功能蛋白過度磷酸化導致細胞骨架變形甚致細胞死亡。微囊藻毒對魚類之危害雖有報導但其毒性卻因魚種類及試驗方法不同而有極大差異,而其對幼魚或早期魚胚之影響亦是如此。推測其因,可能與微囊藻毒本身之細胞膜通透性低有關,因此在本實驗中我們利用顯微注射來進行MC-LR的處理並觀察其對胚發育之影響,結果發現,當MC-LR處理的濃度越高,斑馬魚胚的死亡率畸型率相對增高,在最高濃度(900 nM)MC-LR處理的斑馬魚胚會有細胞堆疊、細胞移位、分裂不正常的現象;除此之外,利用免疫化學染色法並在共軛對焦顯微鏡下觀察,我們發現MC-LR可使得協助胚細胞間連結的cadherin和β-catenin分布明顯地受到干擾,肌動蛋白(actin)也有不正常分布與堆聚的情況,而存活之斑馬仔魚也會受到MC-LR影響而發生各種不同畸型。綜合以上結果,我們證明微囊藻毒在進入斑馬魚胚內會對其分裂及發育有毒害,而其毒理作用機制則可能是經由對細胞骨架及其調控因子磷酸化之調節,但此推測仍須進一步探討其細胞內相關訊息傳導機制始可證實。zh_TW
dc.description.abstractMicrocystin-LR(MC-LR), a cyanobacterial toxin, is a potent inhibitor of protein phosphatase 1(PP1)and protein phosphatase 2A(PP2A). PP1 and PP2A are critical regulators in embryonic development. However, the effects of MC-LR in embryonic development are controversial. MC-LR has been demonstrated to be highly toxic in medaka, but not in zebrafish or rabbit embryos. The causes of difference may be due to membrane impermeability that impaired the delivery of MC-LR into cytoplasm of zebrafish and rabbit embryos. Therefore, we microinjected MC-LR directly into the developing zebrafish embryos and investigated the effects of MC-LR on embryonic development. We demonstrated that MC-LR induced the lethality of zebrafish embryos in a dose- and time-dependent manner. MC-LR also induced the loss of blastomere coherence via the interference of β-catenin and cadherins distributions. Furthermore, the MC-LR treated fry revealed various developmental defects. These results suggested that MC-LR might affect the phosphorylation equilibrium of signaling molecules, including β-catenin and cadherins, required early in zebrafish embryonic development.en
dc.description.provenanceMade available in DSpace on 2021-06-13T17:26:25Z (GMT). No. of bitstreams: 1
ntu-94-R91243014-1.pdf: 998574 bytes, checksum: f0782376fa08433b657092a278b9993f (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents目錄……………………………………………………………………I
表目錄………………………………………………………………III
圖目錄……………………………………………………………… IV
中文摘要………………………………………………………………V
英文摘要…………………………………………………………… VI
壹、前言………………………………………………………………1
(一) 緣起………………………………………………………1
(二) 微囊藻毒Microcystin-LR(MC-LR)之基本特性……1
1. 關於藻華 ………………………………………………1
2. 微囊藻毒(microcystins)對於生物體的危害………1
3. 微囊藻毒之產生…………………………………………3
4. 微囊藻毒之結構…………………………………………3
5. 微囊藻毒之毒性…………………………………………4
6. 微囊藻毒之運輸…………………………………………4
7. 微囊藻毒之去磷酸酶抑制性……………………………5
8. 微囊藻毒對於細胞生理功能的影響……………………5
9. 微囊藻毒的解毒機制……………………………………6
(三) 磷酸化與去磷酸化作用…………………………………6
1. 細胞內磷酸化與去磷酸化作用之進行機制……………6
2. 細胞內磷酸化與去磷酸化作用之生理調控……………7
3. 細胞內磷酸化與去磷酸化作用與訊息傳導……………7
(四) 去磷酸酶抑制劑之研究…………………………………8
1. 大自然中去磷酸酶抑制劑的種類………………………8
2. 微囊藻毒抑制去磷酸酶之研究…………………………9
(五) 細胞骨架(cytoskeleton)與其他結構輔助性蛋白…9
1. 細胞骨架…………………………………………………9
2. 結構輔助性蛋白…………………………………………10
(六) 斑馬魚(Danio rerio)………………………………11
1. 斑馬魚飼養環境以及魚胚的培養………………………11
2. 斑馬魚胚發育過程………………………………………12
3. 斑馬魚成為模式物種的優勢……………………………12
(七) 本研究之假設與實驗目標………………………………13
貳、材料與方法………………………………………………………14
參、實驗結果…………………………………………………………21
肆、討論………………………………………………………………28
伍、結論………………………………………………………………33
陸、參考文獻…………………………………………………………34
柒、表…………………………………………………………………43
捌、圖…………………………………………………………………44
附錄A. 微囊藻毒的化學結構……………………………………… 56
附錄B. 斑馬魚發育早期之各時期名稱以及特色…………………57
附錄C. 去磷酸酶抑制劑MC-LR對於細胞產生二元化的影響………58
附錄D. 實驗試藥……………………………………………………59
附錄E. 緩衝液配製…………………………………………………61
附錄F. 器材與儀器…………………………………………………66
dc.language.isozh-TW
dc.title微囊藻毒Microcystin-LR抑制斑馬魚胚發育之研究zh_TW
dc.titleMicrocystin-LR Inhibits zebrafish embryonic developmenten
dc.typeThesis
dc.date.schoolyear93-1
dc.description.degree碩士
dc.contributor.oralexamcommittee周宏農,羅秀婉
dc.subject.keywordβ-catenin和cadherin,胚胎,蛋白質去磷酸&#37238,1,2A,肌動蛋白,微囊藻毒,斑馬魚,zh_TW
dc.subject.keywordactin,Embryos,Zebrafish,PP2A,PP1,β-catenin and cadherin,Microcystin,en
dc.relation.page66
dc.rights.note有償授權
dc.date.accepted2005-01-18
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept漁業科學研究所zh_TW
顯示於系所單位:漁業科學研究所

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  目前未授權公開取用
975.17 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved