請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39288
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 劉家瑄 | |
dc.contributor.author | Kuo-Wei Yang | en |
dc.contributor.author | 楊國威 | zh_TW |
dc.date.accessioned | 2021-06-13T17:25:26Z | - |
dc.date.available | 2005-02-02 | |
dc.date.copyright | 2005-02-02 | |
dc.date.issued | 2005 | |
dc.date.submitted | 2005-01-24 | |
dc.identifier.citation | Anadrill-Schlumberger, Logging While Drilling:Houston(Schlumberger), document SMP-9160., 1993.
Athy, L. F., Density, porosity, and compaction of sedimentary rocks. Bull. Am. Asso. Petro. Geol., 14., 1-24, 1930 Bangs, N.L.B., Westbrook, G.K., Ladd, J.W., and Buhl, P., Seismic velocities from the Barbados Ridge complex. J. Geophys. Res., 95:8767-8782, 1990. Blum, P., Physical properties handbook: a guide to the shipboard measurement of physical properties of deep-sea cores. ODP Tech. Note,26[Online]. Available from World Wide Web: http://www.odp.tamu.edu/publication/tnotes/tn26/INDEX.HTM. [Cited 2001-09-02]., 1997. Bray, C. J., and Karig, D. E., Porosity of sediments in accretionary prism, And some implications for dewatering processes. J. Geophys. Res., 90:768-778, 1985. Carson, B., Tectonically induced deformation od deep-sea sediments off Washington and Northern Oregon:mechanical consolidation, Marine Geology, 24, 289-307, 1977. Carson, B., Holmes, M.L., Umstattd, K., Strasser, J.C., and Johnson, H.P., Fluid expulsion from the Cascadia accretionary prism: evidence from porosity distribution, directmeasurements, and GLORIA imagery. Philos. Trans. R. Soc. London A, 335: 331-340, 1991. Cochrane, G.R., Mackay, M.E., Moore, G.F., and Moore, J.C., Consolidation and deformation of sediments at the toe of the central Oregon accretionary prism from multichannel seismic data. In Westbrook, G.K., Carson, B., Musgrave, R.J., et al., Proc. ODP, Init. Repts., 146(Pt. 1):College Station, TX(Ocean Drilling Program), 421-426, 1994 Davis, E.E., Fisher, A.T., Firth,J.V., et al.,Proceedings of the Ocean Drilling Program, Initial Reports, Vol. 168, 1997. Hamilton, E. L., Sound velocity and related properties of marine sediments, North Pacific. J. Geophys. Res., 75:4423-4446, 1970 Hamilton, E. L., Prediction of deep-sea sediment properties: state of the art. In Inderbitzen, A.L. (Ed.), Deep-sea Sediments: Physical and Mechanical Properties: New York(Plenum), 1-44, 1974. Hamilton, E. L., Variation of density and porosity with depth in deep-sea sediments. J. Sediment. Petrol., 46:280-300, 1976. Hyndman, R. D., Moore, G. F., and Moran, K., Velocity, porosity, and pore-fluid loss from the Nankai subduction zone accretionary prism. In Hill. I.A., Taira, A., Firth, J.V., et al., Proc. ODP, Sci. Results, 131: College Station, TX(Ocean Drilling Program), 211- 220, 1993. Jarrard, R. D., Log-based porosity of ODP sites of the Cascadia accretionary Prism. Proceedings of the Ocean Drilling Program, Scientific Results, Vol.146, 313-335, 1995. Kimura, G., Silver, E.A., Blum, P., et al., Proceedings of the Ocean Drilling Program, Initial Reports, Vol.170, 1997. Lamont-Doherty Earth Observatory-Borehole Research Group, Wireline Logging Services Guide:[online]Available from World Wide Web <http://www.ldeo.columbia.edu/BRG/ODP/DATABASE/>., 1994. Le Pichon, X., Henry, P., and Kaiko-Nankai Scientific Crew. Water budgets in accretionary wedges: a comparison. Philos. Trans. R. Soc. London A, 335:315-330, 1991. Lisa M. Kraemer, Robert M. Owen, and Gerald R. Dickens., Lithology of the upper gas hydrate zone, black outer ridge:a link between diatoms, porosity, and gas hydrate. Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 164, 229-235, 2000. Maltman, A.J., Byrne, T., Karig D.E., Lallemant, S., Knipe, R., Prior, D., Deformation structures at site 808, Nankai accretionary prism, Japan., Proceedings of the Ocean Drilling Program, Scientific Results, Vol.131,123-133,1993. Mikada, H., Becker, K., Moore, J.C., Klaus, A., et al., Proceedings of the Ocean Drilling Program, Initial Reports, Vol.196, 2002. Moore, G.F., Taira, A., and Klaus, A., et al., Proceedings of the Ocean Driliing Program, Initial Reports ,Vol.190, 2001. Nobes, D.C., Mienert, J., and Dirksen, G.J., Lithologic control of physical-property interrelationships. In Ciesielski, P.F., Kristoffersen, Proceedings of the Ocean Drilling Program,Scientific Results. Vol.114,657-669, 1991. Taira A., Hill I., Firth, J.,et al.,Proceedings of the Ocean Drilling Program, Initial Reports, Vol.131, 1991. Tréhu, A.M., Bohrmann, G., Rack, F.R., Torres, M.E., et al., Proceedings of the Ocean Drilling Program, Initial Reports ,Vol. 204, 2003. Von Huene, R., and D.W.Sholl, Observations at convergent margins concerning sediment subduction,subduction erosion, and the groth of continental crust, Rev. Geophys., 29, 279-316, 1991. Wang, C., Hwang, W., and Cochrane, G.R., Tectonic dewatering and mechanics of protothrust zones: example from the Cascadia accretionary margin. J. Geophys. Res., 99:20043-20050, 1994. Westbrook, G.K., Carson, B., Musgrave, R.J., et al., Proceedings of the Ocean Drilling Program, Initial Reports, Vol.146, 1994. Yuan, T., Spence, G.D., and Hyndman, R.D., Seismic velocities and inferred porosities in the accretionary wedge sediments at the Cascadia Margin. J. Geophys. Res., 99:4413-4427, 1994. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39288 | - |
dc.description.abstract | 孔隙率是沉積岩中一項非常重要的物理性質,它不僅影響震波速度傳遞的快慢,在石油及天然氣探勘開發中更是評估油氣儲量主要的參數。一般在
聚合式大陸邊緣的增積岩體地帶較少油氣開發的條件,但近年來在增積岩體地區發現廣泛的天然氣水合物,也包括台灣西南海域。由於天然氣水合物被視為21世紀最具潛力的新能源,評估天然氣水合物在地層中的儲量,做為是否開採經濟價值的考量,是未來可能必須考慮的問題。根據評估天然氣水合物的儲量公式: 天然氣水合物儲量=分佈面積x平均厚度 x平均孔隙率 x 飽和度 x容積倍率,可知平均孔隙率是一項估算儲量的因子,因此本研究希望能藉了解在增積岩體中平均孔隙率的分佈情形,以協助未來評估天然氣水合物的儲量。研究地層中的孔隙率有兩種方法,一種是利用震波速度推估地層的平均孔隙率,這個方法可以得到大範圍的孔隙率,但是可能較為不精準。另一種方式則是鑽孔直接量測地層或岩心標本的孔隙率,這個方式可以得到較精準,但較局部的孔隙率。本研究主要利用海洋鑽探計畫(ODP)的岩心資料庫,針對幾個發現有天然氣水合物賦存的增積岩體來探討這些增積岩體中孔隙率分佈的情形,希望能對未來評估台灣西南海域的增積岩體天然氣水合物含量有所幫助。本研究分析的資料包括北美外海的Cascadia增積岩體、與作為對照的Cascadia海底盆地、日本Nankai增積岩體、中美洲的Costa Rica增積岩體。研究結果發現在受擠壓變形較為劇烈的增積岩體中,因壓密作用孔隙率會明顯的隨深度增加而減少,但在海洋盆地區域則沒有明顯隨深度減少的趨勢。Nankai增積岩體和Cascadia增積岩體的孔隙率在海床淺部地層中約為65%-70%,然後隨深度每加深100公尺,孔隙率大約減少5%。另外在增積岩體中越遠離變形前緣,沉積物會因增積作用擠壓變形使孔隙率越來越小。 | zh_TW |
dc.description.provenance | Made available in DSpace on 2021-06-13T17:25:26Z (GMT). No. of bitstreams: 1 ntu-94-R91241315-1.pdf: 6297319 bytes, checksum: 26fc26abbcdd8d9ce511995ad468b75a (MD5) Previous issue date: 2005 | en |
dc.description.tableofcontents | 摘要--------------------------------------i
目錄--------------------------------------ii 圖目錄----------------------------------------------------v 表目錄---------------------------------- viii 第一章 緒論------------------------------------------------------------------------------1 1-1 研究動機與目的-----------------------------------------------------------------1 1-2 前人之研究-----------------------------------------------------------------------2 1-3 本研究之方向--------------------------------------------------------------------9 第二章 研究方法-----------------------------------------------------------------------10 2-1 研究方法與孔隙率資料來源------------------------------------------------ 10 第三章 研究區域介紹及孔隙率的分佈情形----------------------------------15 3-1 Cascadia海底盆地------------------------------------------------------------------15 3-1.1 Cascadia海底盆地地質背景-----------------------------------------------15 3-2.2 Cascadia海底盆地各站位之孔隙率--------------------------------------17 [Site1023]----------------------------------------------------------------------------17 [Site1024]----------------------------------------------------------------------------18 [Site1029]----------------------------------------------------------------------------19 [Site1027]----------------------------------------------------------------------------20 3-1.3 Cascadia海底盆地孔隙率的空間變化--------------------------------------21 3-2 Cascadia增積岩體-------------------------------------------------------------------23 3-2.1 Cascadia增積岩體地質背景---------------------------------------------------23 3-2.2 Cascadia增積岩體各站位之孔隙率-----------------------------------------26 [Site1244]----------------------------------------------------------------------------26 [Site1245]---------------------------------------------------------------------------- 29 [Site1246]----------------------------------------------------------------------------30 [Site1247]--------------------------------------------------------------------------------32 [Site1248]--------------------------------------------------------------------------------33 [Site1251]--------------------------------------------------------------------------------34 [Site1252]--------------------------------------------------------------------------------35 3-2.3 Cascadia增積岩體孔隙率的空間變化-----------------------------------36 3-3 Nankai增積岩體--------------------------------------------------------------------- 40 3-3.1 Nankai增積岩體地質背景-------------------------------------------------- 40 3-3.2 Nankai增積岩體各站位之孔隙率-----------------------------------------42 [Site1173]------------------------------------------------------------------------------- 42 [Site1174]------------------------------------------------------------------------------- 44 [Site1176]------------------------------------------------------------------------------- 45 [Site1175]------------------------------------------------------------------------------- 46 [Site1178]------------------------------------------------------------------------------- 47 [Site808]---------------------------------------------------------------------------------48 3-4 Costa Rica增積岩體---------------------------------------------------------------49 3-4.1 Costa Rica增積岩體地質背景--------------------------------------------49 3-4.2 Costa Rica增積岩體各站位之孔隙率的分佈情形-------------------51 [Site1039]--------------------------------------------------------------------------------51 [Site1043]--------------------------------------------------------------------------------52 [Site1040]--------------------------------------------------------------------------------53 3-4.3 Costa Rica增積岩體孔隙率的空間變化--------------------------------54 第四章 分析及討論--------------------------------------------------------------------- 55 4-1 孔隙率隨深度的變化----------------------------------------------------------------55 4-1.1 Cascadia增積岩體孔隙率隨深度的變化---------------------------------- 55 4-1.2 Nankai增積岩體孔隙率隨深度的變化------------------------------------- 56 4-1.3 Costa Rica增積岩體孔隙率隨深度的變化------------------------------- 56 4-2 孔隙率隨岩性的變化 --------------------------------------------------------------61 4-2.1從岩性單元的劃分來看孔隙率的變化--------------------------------------61 4-2.2從粒徑大小變化來看孔隙率變化--------------------------------------------61 4-2.3從黏土在沉積物中所佔比例來看孔隙率的變化-------------------------61 4-3沉積物距離變形前緣的距離跟孔隙率變化的關係-------------------------65 4-3.1前人之研究-------------------------------------------------------------------------65 4-3.2從ODP鑽井資料所發現的結果-----------------------------------------------65 [Cascadia增積岩體]------------------------------------------------------------------65 [Nankai增積岩體]------------------------------------------------------------------69 [Costa Rica增積岩體]---------------------------------------------------------------72 第五章 結論-------------------------------------------------------------------------------73 參考文獻--------------------------------------------------------------------------------------75 | |
dc.language.iso | zh-TW | |
dc.title | 由ODP鑽井資料來探討增積岩體的孔隙率分佈情形 | zh_TW |
dc.type | Thesis | |
dc.date.schoolyear | 93-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 徐春田,陳民本,李昭興 | |
dc.subject.keyword | 增積岩體,孔隙率, | zh_TW |
dc.subject.keyword | accretionary prism,porosity, | en |
dc.relation.page | 78 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2005-01-24 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 海洋研究所 | zh_TW |
顯示於系所單位: | 海洋研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-94-1.pdf 目前未授權公開取用 | 6.15 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。