請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39282完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王松永(Song-Yung Wang) | |
| dc.contributor.author | Po-Chang Chen | en |
| dc.contributor.author | 陳柏璋 | zh_TW |
| dc.date.accessioned | 2021-06-13T17:25:21Z | - |
| dc.date.available | 2005-01-31 | |
| dc.date.copyright | 2005-01-31 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-01-24 | |
| dc.identifier.citation | 1. 于寧 (2004) 生命週期分析及產品驗證之應用。環境與發展基金會,http://she.moeaidb.gov.tw/issue5/front5.htm。
2. 中國國家標準 (1995) CNS 451 木材密度試驗法,經濟部標準檢驗局。 3. 中國國家標準 (1995) CNS 452木材含水率試驗法。經濟部標準檢驗局。 4. 中國國家標準 (1995) CNS 456木材拉伸(引張)試驗法。經濟部標準檢驗局。 5. 中國國家標準 (1999) CNS 2215 粒片板。經濟部標準檢驗局。 6. 中國國家標準 (2003) CNS 6532 建築物室內裝修材料之耐燃性試驗法。經濟部標準檢驗局。 7. 王松永 (1974) 木材黏彈性之研究(第一報)-木理走向度對抗彎潛變性質之影響。中華林學季刊7(2):61-86。 8. 王松永 (1975) 木材黏彈性之研究(第二報)-木理走向度對鐵杉抗彎潛變性質之影響。台灣大學農學院實驗林研究報告115號:85-100。 9. 王松永 (1981) 木材微波加熱之彎曲成型加工。木工家具(12):8-14。 10. 王松永 (1983) 商用木材。林產工業叢書(I),林產事業協會。p.74-78 11. 王松永 (1984) 木材動力音響性質之究研I-木材音速之影響因子之研究。台灣大學農學院實驗林研究報告150號:1-25 12. 王松永 (1992) 複合木質材料之特性。林產工業11(2):113-132。 13. 王松永 (1993) 木材之燃燒熱值與其影響因子探討。林產工業12(2):35-45。 14. 王松永、沈復(1976) 粒片板彎曲潛變性質的研究。台大實驗林研究報告,118:111-131。 15. 王松永、沈復(1977) 粒片在吸濕過程中彎曲潛變性質之研究。台大實驗林研究報告,120:125-147。 16. 王松永、林振榮 (2001) 應用鑽孔抵抗技術評估台灣杉造林木之早晚材境界密度。台灣林業科學16(3):197-200。 17. 王松永、唐潤秋、J.N. Lee、陳柏璋、羅盛峰 (1995) 用膠量與載重水準對柳杉及杉木定向粒片板之潛變性質影響。林產工業14(2):1-16。 18. 王松永、陳柏璋、唐潤秋 (1995) 杉木中小徑木造林木製造粒片板及其性能評估。中華林學季刊28(2):87-108。 19. 吳順昭、王松永、丁昭義 (1975) 木材可塑性之研究。國立台灣大學及台灣省林務局合作報告第9號。 20. 吳學平(2001)新竹林區柳杉人工林疏伐之工作研究。國立台灣大學,森林學研究所碩士論文。 21. 李明賢、王松永、蔡金木 (2002) 不同檢測標準下木質材料耐燃性能之探討。林產工業 21(4):289-296。 22. 林玖玲 (1984) 微波加熱改善木材可塑性之研究。碩士論文,台灣大學森林學研究所。 23. 林振榮、邱志明、王松永 (2000) 超音波應用於香杉鼠害立木樹幹腐朽之研究。台灣林業科學15(2):267-279。 24. 林曉洪、王秀華 (1991) 防火劑刷塗處理對四種商用木材之抗燃性及吸脫濕性研究(II)木材之吸脫濕性質。林產工業10(2):67-81。 25. 林曉洪、王秀華(1999)不同藥劑處理對台灣杉木材熱重分析之影響。林產工業18(3):257-267 26. 林曉洪、王秀華、陳川助 (1991) 防火劑刷塗處理對四種商用木材之抗燃性及吸脫濕性研究(I)木材之抗燃性效應。林產工業10(2):45-65。 27. 林曉洪、王松永 (1988) 防火劑浸漬處理對造林木抗燃性之改善效應。林產工業7(3):1-12。 28. 邱金輝 (1991) 縱向聲波測定定向鉋花板定向率的研究。南京林業大學學報vol.15(4):73~76。 29. 侯國琛 (1996) 非破壞性檢測法。科學圖書大庫,徐氏基金會出版。pp.219-288 30. 柯志裕 (1995) 栽植距離對柳杉實大樑靜曲及動彈係數的影響。台灣大學森林學研究所,碩士論文。 31. 張上鎮、吳季玲、王升陽 (1997) 熱分析技術在木材化學研究領域之應用。林產工業16(1):133-148。 32. 莊世滋 (1999) 應力波及超音波法評估木材及不同撫育處理之立木材質研究。台灣大學森林學研究所,博士論文。 33. 莊鴻濱 (1999a) 耐燃藥劑吸收量對杉木板之耐燃性及有效厚度的影響。林產工業18(1):69-78 34. 莊鴻濱 (1999b) 耐燃藥劑吸收量與加速劣化處理對木材機械質之影響。林產工業18(4):443-454 35. 許淙慶,鄭國彬,李進興 (2000) 熱分析技術在高分子材料之應用。中華民國紡織工程學會誌。18(1):43-58。 36. 陳柏璋、王松永 (1999) 台灣泡桐製造定向粒片板之研究。林產工業18(1):37-46。 37. 陳柏璋、王松永 (1999) 杉木定向粒片板之定向率與超音波傳播速度之關係。林產工業18(3):269-278。 38. 陳柏璋、唐潤秋、王松永 (1993) 定向粒片板(OSB)用薄片之數種基本性質探討。林產工業12(3):65-82。 39. 陳泰松 (1983) 膠合性質及其膠合強度之試驗法,膠合技術選輯。手工業叢書第7號,台灣省手工業研究所。p.48-53 40. 陳載永 (1988) 速生樹種木材製造建築用粒片板之適用性(II-1)-柳杉、台灣泡桐及木油桐製造長薄片型與方薄片型粒片板。林產工業7(2):13-22。 41. 陳載永 (1989) 非破壞性方法測定粒片板之彈性係數。中興大學農林學報38(2):151-164。 42. 陳載永 (1989) 速生樹種木材製造建築用粒片板之適用性(III-1)-相思樹、楓香及台灣杉製造長薄片型與方薄片型粒片板。中興大學實驗林研究報告11:63-78。 43. 陳載永、吳俊萍 (1993a) 速生樹種木材製造粒片板之研究(IV-1),粒片板密度對聚異氰酸鹽系膠及尿素膠粒片板性質之影響。林產工業12(1):72-88。 44. 陳載永、吳俊萍 (1993b) 速生樹種木材製造粒片板之研究(IV-4),聚尿膠合劑之聚乙二醇與聚異氰酸鹽系混合比對粒片板性質之影響。林產工業12(1):89-99。 45. 陳載永、陳勇全、范振德 (1993c) 粒片排列對定向粒片性質之影響。林產工業12(4):63-80。 46. 陳載永、陳勇全、范振德 (1993d) 熱壓對長薄片型粒片性質之影響。林產工業12(2):46-58。 47. 黃金城、林翰謙、黃秋惠、吳幸芳、葉明筠(2003)台灣雲葉、青剛櫟及相思樹作為防火樹種之可行性探討。林產工業22(2):129-138 48. 黃亮熾、林法勤、王松永 (2001) 阻抗圖譜技術應用於評估商用粒片板之強度性質。中華林學季刊34(4):479-485。 49. 黃彥三 (1983) 。木工刀具。林產工業叢書(2),林產事業協會。p.6-7 50. 黃彥三、陳欣欣、漆陞忠 (1993) 非破壞性試驗技術應用於原木材質評估之可行性研究。改進林產物加工利用技術之研究論文發表及技術轉移研討會論文集,中華林產事業協會。pp.95-110 51. 黃耀富、林錦盛 (1992) 定向粒片板之研製(二)-粒片的機械定向。中華林學季刊25(4):75-98。 52. 黃耀富、林錦盛 (1993) 定向粒片板之研製(三)-定向粒片板與傳統粒片板之製造及其性質比較。中華林學季刊26(1):61-76。 53. 黃耀富、林錦盛、侯永焜、林志雄、陳坤鎮 (1995) 木質複合板之研究(一),定向粒片層為芯層之複合板製造。林產工業14 (2):17-38。 54. 黃耀富、森稔 (1986) 定向粒片板之研製(一)。林產工業5(2):1-10。 55. 楊德新、陳湘琴、王松永、蔡明哲 (2003) 非破壞性檢測技術應用於評估單板貼面定向粒片板之性質。中華林學季刊36(2):199-209。 56. 葉致翰 (1994) 材種、含水率及長度對三種非破壞性測定儀檢測木材彈性係數之影響。中興大學森林學研究所碩士論文。 57. 雷明遠 (1992) 熱分析與氧氣指數試驗法應用於木材抗燃劑之選配。台灣大學森林學研究所,博士論文。 58. 蔡如藩 (1985) 木材力學性質。徐氏基金會。 59. 羅盛峰 (1996) 杉木及柳杉造林木製造耐燃定向粒片板之探討。台灣大學森林學研究所林產組碩士論文。 60. 饒玉珍、羅盛峰、王松永(1998) 促進劣化處理對防焰合板之物理性質及表面防焰性能之影響。林產工業17(3):481-495。 61. 清水 臣、大熊幹章(1981) 配向性パ-ティクルボ-ドの強度に關する基礎的研究(第1報) チツプ間結合力について,木材學會誌27(1):8-13 62. 清水 臣、大熊幹章(1981) 配向性パ-ティクルボ-ドの強度に關する基礎的研究(第2報) 應力傳達回路について,木材學會誌27(6):463-469 63. 梶田 熙 (1987) 木質ボドの製造技術および裝置プラントの進展、配向技術。木材工業47(12):15-18。 64. 佐佐木 光 (1987) 木質ボードの現況と今後の展開。木材工業42(12):2-10。 65. 佐道 健 (1971) 木材の可塑化。木材工業26(11):496-502。 66. 則元 京 (1979) マィクロ波による木材の塑性曲げ加工。木材研究•資料,第14號。 67. 渡邊治人 (1978) 木材理學總論。農林出版株式會社。pp.507-514 68. (1962) The density distribution in flake boards. Michigan Quart. Bull. 45(1):104-121. 69. (1967) Behavior of particleboard mat during the press cycle. Forest Prod. J. 17(2):51-57. 70. .and H. Xu (1989) A simulation of the horizontal density distribution in a flakeboard. Forest Prod. J. 39(5):29-33. 71. .and X. Hong (1989) Model analysis of flakeboard variables. Forest Prod. J. 41(11/12):55-60. 72. American Society for Testing and Materials (1994) Standard Test Method for Evaluating the Flexural Properties of Fire-Retardant Treated Softwood Plywood Exposed to Elevated Temperatures. ASTM D 5516-94:568-572. 73. Amstrong, L.D. and P.V.A. Grossman (1972) The behavior of particle-board and hardboard beams during moisture cycling. Wood Science and Technology 6:128-137. 74. Bodig Jozsef, A., Jayne Benjamin (1982) Mechanics of wood and wood composites.Van nistrand reinhold company Inc.. , pp.230-279 75. Clippings (2002) OSB gaining inroads in remodeling. Forest Prod. J. , 52(2):5. 76. Dai, C. (2001) Viscoelasticity of wood composite mats during consolidation. Wood and Fiber Science 33(3):353-363. 77. Dai, C. and P. R. Steiner (1993) Compression behavior of randomly formed wood flake mats. Wood and Fiber Science 25(4):349-358. 78. Dai, C. and P. R. Steiner. (1994) Spatial structure of wood composites in relation to processing and performance characteristics. Part 3. Modeling the formation of multilayered random flake mats. Wood Science Technology 28:229-239. 79. Dai, C., S. Chen, A. Pielasch (1996) Simulating of mat formation for wood strand composites. Proceedings of the Third Pacific Rim Bio-based Composites Symposium. Kyoto, Japan,32-39. 80. Dai, C., Steiner P. (1997) On horizontal density variations in randomly formed short-fiber wood composite board. Composites 28A:57-64. 81. Dinwoodie, J.M.; B.H. Paxton; and C.B. Pierce(1981) Creep in chipboard part 3: Initial assessment of the influence of moisture content and levels of stressing, Wood Science and Technology 15(2):125-144. 82. Dinwoodie, J.M.; D.J. Robson and J.S. Higgins (1991) Creep in chipboard part 8: The effect of steady state moisture content, temperature and level of stressing on the relative creep behavior and creep modulus of a range of boards. Wood Science and Technology 25:225-228. 83. Foschi, R. O. (1990) Reliavility-base design in timber engineering: A Canadian Prospective, Proceeding of 1990 International Timber Engineering Conference, Hideo Sugiyama, ed., Science University of Tokyo, Vol. I, p. 1-5. 84. Fridley, K. J. and R. C. Tang (1992) Shear effects on the creep behavior of wood composite I-beams, Forest products Journal 42(6):17-22. 85. Fuller J., R. J. Ross, R. Dramm (1995) Nondestructive evaluation of honeycomb and surface checks in red oak lumber. Forest Prod. Journal 45(5):42-44. 86. Fung, D.P.C. (1976) Further investigation on the effect of H3PO4 on the pyrolysis of cellulose. Wood Science 9(1):55-57. 87. Gnanahareen, R. and J. Haygreen (1979) Comparison of the creep behavior of basswood waferboard to that of solid wood. Wood and Wood Fiber 11(3):155-170. 88. Grimer R. (1976) Flake alignment in particleboard as affected by machine variables and particle geometry. Res. Paper 275. Madison, WI U. S. Dept. of Agric., Forest Prod. Lab.. 89. Halligan, A. F. and A. P. Schniewined (1972) Effect of moisture on physical and creep properties of particleboard, Forest Products Journal 22(4):41-48. 90. Harless, P.E., F.G. Wagner, P.H. Short, R.D. Seale, P.H. Mitchell, and D.S. Ladd (1987) A model to predict the density profile of particleboard. Wood Fiber Science 19(1):81-92. 91. Hirata T. and K. E. Werner (1987) Thermal analysis of cellulose treated with boric acid or ammonium phosphate in varied oxygen atmospheres. J. Appl. Polym. Sci. 33:1533-1556. 92. Illston J. (1994) Construction materials-their nature and behavior. E and FN Spon. 93. Kai K., F.W. Bröker, and A . Fruhwald (1996) Non-contact method to determine ultrasonic velocity of wood based panel, 10th International Symposium on Nondestructive Testing of Wood. Lausanne Switzerland. pp.83-91. 94. Kallmes, O. J. (1961) The application of probability theory to paper making. TAPPI 43(9):737-752. 95. Kelly, M. (1977) Critical review of relationships between processing parameters and physical properties of particleboard. General Tech. Rep. FPL-10, USDA, Forest Prod. Lab., Madison, WI. U.S.A. 96. Kollmann F. P., W. A. Cŏte Jr. (1968) Principles of Wood Science and Technology (I) Solid Wood. Chapter 6:240-256. Syracuse, N. Y., U.S.A.. 97. Kubler, H. (1980) Wood as a building and hobby material. Wiley and Sons. Inc. New York, U.S.A. 98. Lang, M. E., and M. P. Wolcott (1995) Modeling the consolidation of wood strand mat. AMD-Vol. 209/ MD-Vol. 60, Mechanics of cellulosic materials. ASME 1995. 99. Lang, M. E., and M. P. Wolcott (1996) A model for viscoelastic consolidation of wood strand mats. Part I. Structural characterization of the mat via Monte Carlo simulation. Wood and Fiber Science 28(1):100-109. 100. Le Van, S. L., and J. E. Winandy (1990) Effects of fire retardant treatments on wood strength: a review. Wood and Fiber Science 22(1):113-131. 101. Lee, S., Q. Wu, and B. Strickland (2001) The influence of flake chemical properties and zinc borate on gel time of phenolic resin for oriented strand. Wood and Fiber Science 33(3):425-436. 102. Leichti, R. J. and R. C. Tang (1989a) Comparative performance of longterm loaded wood composite I-beams and sawn lumber. Wood and Fiber Scienc 21(2):142-154. 103. Leichti, R. J. and R. C. Tang (1989b) Effect of creep on the reliability of sawn lumber and wood composite I-beams. Mathl. comput, modeling 12(2):153-161. 104. Lu, C., F. Lam. (2001) Random field representation of horizontal density distribution in partially oriented strandboard mat. Wood and Fiber Science 33(3):437-449. 105. Lu, C., P. R. Steiner, and F. Lam (1998) Simulation study of wood flake composite mat structures. Forest Products Journal 48(5):89-93. 106. Mishiro A. (1996) Effects of grain and ring angles on ultrasonic velocity in wood. Mokuzai Gakkishi 42(2): 211-215. 107. Nishimura T., M. P. Ansell, N. Ando (2001) The relationship between the arrangement of wood strands at the surface of OSB and modulus of rupture determined by image analysis. Wood Science and Technology 35:555-562. 108. Nishimura T., M. P. Ansell, N. Ando (2002) Evaluation of the arrangement of wood strands at the surface of OSB by image analysis. Wood Science and Technology 36(2002):93-99. 109. Pearce, E. M., Y. P. Khanna and D. Raucher (1981) Thermal analysis in polymer flammability. In thermal characterization of polymeric materials, Chap. 8. Academic Press, New York. 110. Pizzi, J. Valenzuela, and C. Westermeyer. (1993) Non-emulsifiable, water-based, mixed diisocyanate adhesive system for exterior plywood. Part 2: Theory application and industry results. Holzforschung 47(1):68-71. 111. Price E. W. (1985) Creep behavior of flakeboards made with a mixture of southern species. Wood and Fibe Science 17(1):58-74. 112. Robertson, B. (1997) The unseen unsung heroes-improving the fabric of society. Proceedings of Timber Innovation Conference, 1-8. September 29th, London, UK. 113. Ross R. J. and Pellerin R. F. (1991) Nondestructive testing for assessing wood members in structures – A review. Forest Products Laboratory, General Technical Report 70, 29 pp. 114. Ross R. J. and R. F. Pellerin (1991) NDE of green material with stress waves: Preliminary results using dimension lumber. Forest Products J. 41(6):57-59. 115. Ross R. J., F. J., and Dramm R. J. (1995) Nondestructive evaluation of green defect-prone red oak lumber: A pilot study. Forest Products J. 45(11/12):51-52. 116. Saito, F., M.: Ikeda, and K. Ogawa (1980) Time related flexural behavior of particleboard under long term load. Mokuzai Gakkishi 26(11):714-718. 117. Schaffer, E. (1977) State of structural timber fire endurance. Wood and fiber 19(2):145-170. 118. Schafizadeh, F. and P.P.S. Chir (1977) Thermal deterioration of wood. In Wood technology: Chemical aspects, ACS Symp. Washington D.C. Ser. 43, p 57-81. 119. Shaler S. (1991) Comparing two measures of flake alignment. Wood Science and Technology 26:53-61. 120. Steiner P., W. Xu. (1995) Influence of flake characteristics on horizontal density distribution of flake board. Forest Prod. J. 45:61-65. 121. Steiner,P. R., and C. Dai (1993) Spatial structure of wood composites in relation to processing and performance characteristics. Part I: Rationale for model development. Wood Science and Technology 28(1):45-51. 122. Structural Board Association (1993) Workshop on DOL Performance of OSB. Held in Toronto, Canada of February, 16-18. 123. Suchsland, O. (1959) An analysis of particle board process. Michigan Quart. Bull. 42(2):350-372. 124. Sun Y.C., T. Arima (1998) Structural mechanics of wood composite materials 1: Ultrasonic evaluation of internal bond strength during an accelerated aging test, Journal of Wood Science, 44: 348-353. 125. Suo S., J. Bowyer (1994) Simulation modeling of particleboard density profile. Wood Science and Technology 26:397-441. 126. Suo, S. (1991) Computer simulation modeling of structural particleboard properties. Ph. D thesis. Univ. of Minnesota, St. Paul, Minn. 150pp. 127. Sutula, P. R. and A. A. Moslemi (1973) Effect of three cyclic constant levels of moisture content on creep deflection in hardboard. Forest Products Journal 23(3):50-55. 128. Tang, R. C. and E. W. Price (1986) Methods for predicting long term performance of composite products. Proceedings of 18th IUFROC (International Union of Forestry Research Organzation) World Congress, Division 5: Forest Products. pp306-316. 129. Tang, R. C. and E. W. Price (1994) Parameters that may affect creep and duration-of-load behavior of wood composite panel products, 1994 International Timber Engineering workshop. University of Technology, Sydney, Australia, July 5-7, 1994. 130. Techno news (2001) Termite-Resistant products researched at LSU. Forest Products Journal 51(4):5. 131. Triche, M. H., and M. O. Hunt (1993) Modeling of parallel-aligned wood strand composites. Forest Prod. J. 43(11/12):33-44. 132. Urakami, H., M. Fukuyama (1998) The effect of grain angle on the flexural creep of wood, Mokuzai Gakkishi 34(1): 1-7. 133. Wang S. Y. and B. J. Chen. (2001) The flake’s alignment efficiency and orthotropic properties of oriented strand board, Holzforschung 55(1):97-103. 134. Wang X., M. McClellan, R. J. Barbour, J. R. Erickson, J. W. Forsman and G. D. McGinnis (2001) Nondestructive evaluation of standing trees with a stress wave method. Wood and Fiber Science 33(4): 522-533. 135. Wang, W. H., X. Zang and R. Lu.(2004) Low formaldehyde emission particleboard bonded by UF-MDI mixture adhesive. Forest Products Journal 54(9):36-39. 136. Winandy, J. E. (1995) Effects of fire retardant treatment after 18 months of exposure at 150 ℉ (66 ℃). USDA Forest Service, FPL-RN-0264. 137. Winandy, J. E., S. L. Le Van, S. P. Hoffman, and C. R. Mcintyre (1991) Thermal degradation of fire retardant treated plywood development and evaluation of a test protocol. USDA Forest Service, FPL-RN-0264. 138. Winistorfer, P. M., W. Xu, R. Wimmer (1995) Application of a drill resistance technique for density profile measurement in wood composite panels. Forest Prod. J. 45(6):90-93 139. Winistorfer, P.M., T.M. Young, and E. Walker (1995) Modeling and comparing vertical density profiles. Wood Fiber Sci. 28(1):133-141. 140. Wolcott, M.P. (1990) Modeling viscoelastic cellular materials for the processing of wood composites. Ph.D. dissertation, Department of wood science and forest products, Virginia Polytechnic Institute and State University, Blackburg, VA. U.S.A. 141. Wu, Q. and J. N. Lee (2002) Thickness swelling of oriented strand board under long-term cyclic humidity exposure condition. Wood and Fiber Science 34(1):125-139. 142. Xu, W., and P. R. Steiner (1995) A statistical characterization of the horizontal density distribution in flakeboard. Wood Fiber Science 27(2):119-125. 143. Yeh, M. C.; R. C. Tang and C. Y. Hse (1990) Flexural creep of structural flakeboards under cyclic humidity. Forest Products Journal 40(10):51-57. 144. Zombori B. G.., Kamke F. A. (2001) Simulation of the mat formation process. Wood Fiber Science, 33(4):564-579. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39282 | - |
| dc.description.abstract | 本研究之目的在於研發國產樹種應用於定向粒片板之製造,並預期能符合商用木質板材之性質要求,及家居生活及工程上之需求,輔以非破壞性試驗、耐燃性試驗及甲醛釋出量之測定等,俾便於擴展木質板材之應用範圍及安全性能。研究結果如下:
長薄片型粒片之切削,應先浸冷水軟化處理並施以橫向切削,定向裝置則以柵狀高低隔板式之振動篩最佳。板表面薄片之木理方向與定向方向所成角度之定向角0-15°時,己達73-82%,定向效果相當優良。柳杉、杉木OSB之平均定向角度,表面為10°-14°;台灣泡桐OSB,表面為21°-23°。 OSB之剖面密度及鑽孔抵抗之阻抗圖譜,大都有表底層密度值較大而中心層較小之趨勢。用膠量6.5%時,木螺絲保持力符合要求;吸濕膨潤率以厚度最大,橫向次之,縱向最小;靜曲強度性質符合CNS之標準。MOR異方性為2.68 - 5.59,而MOE之異方性則為4.78 - 10.9。MOR與MOE的關係均為正相關。 全板之音速值,V//為4234∼4632 m/sec,V | zh_TW |
| dc.description.abstract | This research was to study the application of domestic species to the manufacture of OSB (Oriented Strand Board) and the possibility to fit the demand of the needed properties of wood based panel in commercials. Besides, for the safety consideration both on the human livings and engineering, and the need in grading wood based panel qualities, this study also included the experiments on the Nondestructive Test, Fire-Retardant Test and Emission Formaldehyde Test. Therefore, the collected information could be used on grading where the wood based panel is possibly applied to and on evaluating how safe it would offer. The results are as follows:
1. The flake should be done by dipping into cold water for socking moisture to reduce the resistance of cutting. The direction of cutting was perpendicular to the grain. The most appropriate alignment for the flake should be screened by the uneven screens mounted on the screen frame. As the accumulation of orientation rate from flake’s aligned angles of face layer was within 0° - 15°, the percentage would reach to 73 – 82 % on the OSB. Then, the effectiveness was excellent. On the face layer of the Japanese-fir and China-fir OSB, the weighted average of aligned angle was about 10°-14°, 21°-23° to the Paulownia OSB. 2. About the OSB density profile behavior, except JSP OSB, all showed significantly high phenomena on the bottom and face layer, but low in the core. The resistograph obtained from the drill resistance test would show density profile curve. There were correlations between the index of Pdi, PA, GF, Pb and the thickness swelling, MOE//, MOE⊥. To the screw holding, the 6.5 % resin content OSB was qualified to the demand. As the absorption of MC% of OSB was increasing, the RH% increased. The MC% would be lower at 40 ℃, compared with 25 ℃. The OSB percentage of swelling would be large to the thickness direction, perpendicular alignment next and parallel alignment smallest. Most of the thickness swellings could match the requirement of CNS. The strength properties of OSB bending test to all of them reached the CNS standard. The orthotropic of MOR were 2.68 – 5.59, but 4.78 – 10.90 to the MOE. The linear regressions to the relationship between MOR// and MOE//, and MOR⊥ and MOE⊥ were significantly positive. 3. About the ultrasonic velocity to the board, the parallel to the alignment would be larger than perpendicular to the alignment: V// was 4234 – 4632 m/sec, V⊥ 1364 – 1652 m/sec, and V// / V⊥ 2.7 – 3.2. As the measuring angle was increasing, the ultrasonic velocity would decrease. It was resulted from the quadric regression. The regression was significantly negative. 4. The optimal n values for Hankinson’s formula were 1.83 –1.89 for China-fir OSB, 1.9 – 2.1 for Japanese-fir OSB, and 2.0 –2.1 for Japanese-fir bending test specimen. From the seven bending test specimens cut at different angles of JMP OSB, the ultrasonic velocity would be the largest at 0°, and it would drop sharply as the bending test specimens’ angle to the flake alignment increased. The ultrasonic velocity would be the smallest at 90°. The n value of Jacoby equation and n value of Hankinson’s formula were highly correlated. Compared at the orthotropic property, the orientation ratios of full board or bending specimen could reach to 70-80 % to the solid wood. About the optimal n values in Hankinson’s formula, MOR/ρ and MOE/ρ were quite similar to the solid wood in n value. The ultrasonic velocity, bending strength properties, and dynamic elastic property had significant positive correlations. 5. To the creep property, the phenomenon of deflection occurred instantly as loaded, about 20 – 23 % higher of Japanese-fir OSB to China-fir OSB. The relative creeps were less than 2. The remained ratio of MOE would mostly drop below 50 %; but, MOR would be 70 % higher, referring that the loss of the creep load elasticity would be higher that the plasticity. 6. To the solid wood, the Japanese-fir TGA curve was relatively unstable before reaching 300 ℃. However, the TGA curve and weight loss dropped sharply at the temperature between 341 – 374 ℃. This phenomenon was similar to the OSB. At the amount of residual-char, the Paulownia wood was topped to the first among those three species, 0.156 %. But, all of the OSB contained more than it. To the fire resistance of OSB, all met the requirement of CNS 6532 type III. About the emission of formaldehyde, China-fir was 0.6 and 1.0 for Japanese-fir, representing type E1. The formaldehyde emission would drop as the percentage of PMDI flake weight increased. It would drop to 0.3 mg/L below as reaching to 75 %. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T17:25:21Z (GMT). No. of bitstreams: 1 ntu-94-D85625003-1.pdf: 2137318 bytes, checksum: 5381254acc77e92563e0648f3fe17917 (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | 摘要………………………………………………………………….I
Abstract……………………………………………………………...V 目 錄 …………………………………………………………...1 表目錄 …………………………………………………………...6 圖目錄 …………………………………………………………...10 壹、前言 ………………………………………………...................15 貳、文獻探討………………………………………………………..21 2-1長薄片型粒片之切削…………………………….....................21 2-2粒片板之定向………………………………………………….23 2-3粒片板之潛變性質…………………………………………….24 2-4非破壞性試驗………………………………………………….26 2-5耐燃定向粒片板之製造及性質……………………………….27 2-6游離甲醛之釋出量…………………………………………….31 參、材料與方法……………………………………………………..33 3-1長薄片型粒片原料樹種……………………………………….33 3-2長薄片型粒片原料之前處理及薄片切削方式……………….33 3-2-1原料之前處理方法………………………………………….33 3-2-2長薄片型粒片之切削方式………………………………….34 3-2-3外觀特徵…………………………………………………….35 3-2-4長薄片型粒片之縱向引張強度……………………………35 3-2-5長薄片型粒片之膠合性質…………………………………36 3-3製板程序及條件………………………………………...........37 3-3-1長薄片型粒片形狀、尺寸及含水率………………………37 3-3-2膠合劑及用膠量……………………………………………38 3-3-3佈膠…………………………………………………………38 3-3-4抄板…………………………………………………………39 3-3-5板型、預定板密度及數量…………………………………41 3-3-6耐燃藥劑處理………………………………………………42 3-4試驗方法………………………………………………………43 3-4-1原料樹種之密度及含水率…………………………………43 3-4-2外觀特徵……………………………………………………43 3-4-3測定定向粒片板之薄片定向率……………………………44 3-4-4超音波試驗..…………………………………………..........45 3-4-4-1全板試驗…………………………………………………46 3-4-4-2靜曲試片試驗……………………………………………46 3-4-5剖面密度 ………………………………………………….48 3-4-6鑽孔抵抗.…………………………………………………..48 3-4-7OSB之性質…………………………………………………52 3-4-7-1吸水厚度膨脹率…………………………………………52 3-4-7-2吸濕膨脹率………………………………………………53 3-4-7-3內聚強度…………………………………………………54 3-4-7-4木螺絲釘保持力…………………………………………54 3-4-7-5靜曲強度性質……………………………………………55 3-4-8潛變性質……………………………………………………55 3-4-9熱重分析試驗(Thermal gravity analysis)………………….60 3-4-10 OSB表面燃燒性質試驗……………………………........63 3-4-11游離甲醛釋放量……………………………….…………64 肆、結果與討論…………………………………………………...66 4-1長薄片型粒片原料之基本性質..…………………………....66 4-1-1密度及含水率……………………………………………...66 4-1-2薄片之外觀及性質………………………………………...66 4-1-3冷水處理材切削之薄片之基本性質……………………...71 4-2 OSB之長薄片型粒片定向率……………………………….73 4-3 OSB之基本性質….………………………………………....77 4-3-1剖面密度性質……………………………………………..77 4-3-2阻抗圖譜…………………………………………………..80 4-3-3木螺絲釘保持力…………………………………………..83 4-3-4吸濕及膨脹率……………………………………………..87 4-3-5浸水厚度膨脹率…………………………………………..95 4-3-6內聚強度…………………………………………………..97 4-3-7靜曲強度性質……………………………………………..98 4-3-7-1 MOR//…………………………………………………..100 4-3-7-2 MOR⊥…………………………………………………101 4-3-7-3 MOE//…………………………………………………..101 4-3-7-4 MOE⊥…………………………………………………101 4-4 OSB之音速………………….………….………………….101 4-4-1全板之音速值…………………………………………….101 4-4-1-1縱向音速值…………………………………………….104 4-4-1-2橫向音速值…………………………………………….104 4-4-2定向角度與音速值之關係…………………………….....107 4-4-3靜曲試片之音速值 ………………………………………116 4-4-4全板與相關位置小試片之音速值間之關係 ……………120 4-5潛變性質………………………………………………….....125 4-5-1潛變曲線………………………………………..…………125 4-5-2潛變撓度…………………………..………………………130 4-5-2-1樹種之影響…………………..…………………………130 4-5-2-2潛變載重水準之影響……………….………………….131 4-5-2-3用膠量之影響…………….……………………………131 4-5-3 相對潛變數及潛變係數…………………………………132 4-5-4潛變後彎曲強度殘留率………………………………….134 4-6 OSB之燃燒性質………………………….………………..136 4-6-1熱重分析試驗………………………………...…………..136 4-6-2 OSB之耐燃性質…………………………………………141 4-7 OSB游離甲醛釋出量………………………………..…….143 4-7-1 PF / PMDI OSB之靜曲性質與縱向超音波傳遞速度..145 4-7-2 PF / PMDI OSB之內聚強度.…………………………147 4-7-3 PF / PMDI OSB之木螺絲保持力..................................149 4-7-4 PF / PMDI OSB之吸水厚度膨脹率..............................150 伍、結論…………………………………………………….…....152 陸、參考文獻……………………………………………….……156 附錄………………………………………………….……………166 | |
| dc.language.iso | zh-TW | |
| dc.subject | 定向粒片板 | zh_TW |
| dc.subject | Oriented Strand Board | en |
| dc.subject | OSB | en |
| dc.title | 國產樹種定向粒片板製造及工程性能之評估 | zh_TW |
| dc.title | OSB made from domestic wood species and its engineering performances assessment | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 卓志隆(Chih-Lung Cho),王怡仁(Yi-Ren Wang),張上鎮(Shang-Tzen Chang),黃耀富(Yaw-Fuh Huang),劉正字(Cheng-Tzu Liu),陳載永(Tsai-Yung Chen),黃彥三(Yan-San Huang) | |
| dc.subject.keyword | 定向粒片板, | zh_TW |
| dc.subject.keyword | OSB,Oriented Strand Board, | en |
| dc.relation.page | 177 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-01-25 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 森林學研究所 | zh_TW |
| 顯示於系所單位: | 森林環境暨資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 2.09 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
