Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 毒理學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39246
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭明良(Min-Liang Kuo)
dc.contributor.authorCheng-Chi Changen
dc.contributor.author張正琪zh_TW
dc.date.accessioned2021-06-13T17:24:48Z-
dc.date.available2008-02-03
dc.date.copyright2005-02-03
dc.date.issued2005
dc.date.submitted2005-01-26
dc.identifier.citation第一章參考文獻
(1) Greenlee RT, Hill-Harmon MB, Murray T & Thun M. Cancer statistics. CA Cancer J. Clin 2001;51:15-36
(2) Yesner R, et al (eds): International histological classification of tumors. Geneva, World Health Organization, 1982.
(3) Hoffman D, et al: The biological significance of tobacco-specific N-nitrosamines: Smoking and adenocarcinoma of the lung. Crit Rev Toxicol 26:199,1996.
(4) Lau LF, Lam SC. The CCN family of angiogenic regulators: the integrin connection Exp Cell Res. 1999;248:44-57.
(5) Bork, P. The modular architecture of a new family of growth regulators related to connective tissue growth factor. FEBS Lett 1993;327:125-30.
(6) Bradham, D. M., Igarashi, A., Potter, R. L., and Grotendorst, G. R. Connective tissue growth factor: a cysteine-rich mitogen secreted by human vascular endothelial cells is related to the SRC-induced immediate early gene product CEF-10. J. Cell Biol.1991;114:1285-94.
(7) Mukudai Y, Kubota S, Takigawa M. Conserved repressive regulation of connective tissue growth factor/hypertrophic chondrocyte-specific gene 24 (ctgf/hcs24) enabled by different elements and factors among vertebrate species. Biol Chem. 2003;384:1-9.
(8) Nakanishi T, Nishida T, Shimo T, Kobayashi K, Kubo T, Tamatani T, et al.Effects of CTGF/Hcs24, a product of a hypertrophic chondrocyte-specific gene, on the proliferation and differentiation of chondrocytes in culture .Endocrinology. 2000;141:264-73.
(9) Yosimichi G, Nakanishi T, Nishida T, Hattori T, Takano-Yamamoto T, Takigawa M CTGF/Hcs24 induces chondrocyte differentiation through a p38 mitogen-activated protein kinase (p38MAPK), and proliferation through a p44/42 MAPK/extracellular-signal regulated kinase (ERK). Eur J Biochem. 2001;268:6058-65.
(10) Nishida T, Kubota S, Nakanishi T, Kuboki T, Yosimichi G, Kondo S, et al. CTGF/Hcs24, a hypertrophic chondrocyte-specific gene product, stimulates proliferation and differentiation, but not hypertrophy of cultured articular chondrocytes. J Cell Physiol. 2002;192:55-63.
(11) Shimo T, Nakanishi T, Nishida T, Asano M, Kanyama M, Kuboki T, et al. Connective tissue growth factor induces the proliferation, migration, and tube formation of vascular endothelial cells in vitro, and angiogenesis in vivo. J Biochem (Tokyo).1999;126:137-45.
(12) Babic AM, Chen CC, Lau LF. Fisp12/mouse connective tissue growth factor mediates endothelial cell adhesion and migration through integrin alphavbeta3, promotes endothelial cell survival, and induces angiogenesis in vivo. Mol Cell Biol. 1999;19:2958-66.
(13) Hishikawa K, Oemar BS, Tanner FC, Nakaki T, Lüscher TF, Fujii T. Connective tissue growth factor induces apoptosis in human breast cancer cell line MCF-7. J Biol Chem 1999;274:37461-6.
(14) Hishikawa K, Oemar BS, Tanner FC, Nakaki T, Fujii T, Lüscher TF. Overexpression of connective tissue growth factor gene induces apoptosis in human aortic smooth muscle cells. Circulation. 1999;100:2108-112
(15) Leask A, Sa S, Holmes A, Shiwen X, Black CM, Abraham DJ. The control of ccn2 (ctgf) gene expression in normal and scleroderma fibroblasts. Mol Pathol. 2001;54:180-3.
(16) Igarashi A, Nashiro K, Kikuchi K, Sato S, Ihn H, Fujimoto M, et al. Connective growth factor expression in tissue sections from localized scleroderma, keloid, and other fibrotic skin disorders. J. Invest. Dermatol.1996;106:729-33.
(17) Oemar BS, Werner A, Garnier JM, Do DD, Godoy N, Nauck M, et al. Human connective tissue growth factor is expressed in advanced atherosclerotic lesions Circulation. 1997;95:831-9.
(18) Yokoi H, Mukoyama M, Sugawara A, Mori K, Nagae T, Makino H, et al. Role of connective tissue growth factor in fibronectin expression and tubulointerstitial fibrosis Am J Physiol Renal Physiol. 2002;282:933-42.
(19) Ito Y, Aten J, Bende RJ, Oemar BS, Rabelink TJ, Weening JJ, et al. Expression of connective tissue growth factor in human renal fibrosis. Kidney Int.1998;53:853-61.
(20) Tamatani T, Kobayashi H, Tezuka K, Sakamoto S, Suzuki K, Nakanishi T, et al. Establishment of the enzyme-linked immunosorbent assay for connective tissue growth factor (CTGF) and its detection in the sera of biliary atresia. Biochem. Biophys. Res. Commun.1998;251:748-52.
(21) Xie D, Nakachi K, Wang H, Elashoff R, Koeffler HP. Elevated levels of connective tissue growth factor, WISP-1, and CYR61 in primary breast cancers associated with more advanced features Cancer Res. 2001;61:8917-23.
(22) Wenger C, Ellenrieder V, Alber B, Lacher U, Menke A, Hameister H, et al. Expression and differential regulation of connective tissue growth factor in pancreatic cancer cells. Oncogene. 1999;18:1073-80.
(23) Kubo M, Kikuchi K, Nashiro K, Kakinuma T, Hayashi N, Nanko H, et al. Expression of fibrogenic cytokines in desmoplastic malignant melanoma. Br. J. Dermatol.1998;139:192-7.
(24) Shakunaga T, Ozaki T, Ohara N, Asaumi K, Doi T, Nishida K, et al. Expression of connective tissue growth factor in cartilaginous tumors. Cancer. 2000;89:1466-73.
(25) Tong X, Xie D, O’Kelly J, Miller CW, Muller-Tidow C, Koeffler HP. Cyr61, a member of CCN family, is a tumor suppressor in non-small cell lung cancer. J Biol Chem. 2001;276:47709-14.
(26) Soon LL, Yie TA, Shvarts A, Levine AJ, Su F, Tchou-Wong KM. Overexpression of WISP-1 down regulated motility and invasion of lung cancer cells through inhibition of Rac activation. J Biol Chem. 2003;278:11465-70.
(27) Hashimoto Y, Shindo-Okada N, Tani M, Nagamachi Y, Takeuchi K, Shiroishi T, et al. Expression of the Elm1 gene, a novel gene of the CCN (connective tissue growth factor, Cyr61/Cef10, and neuroblastoma overexpressed gene) family, suppresses in vivo tumor growth and metastasis of K-1735 murine melanoma cells. J Exp Med 1998;187:289-96.
第二章參考文獻
(1) Greenlee RT, Hill-Harmon MB, Murray T & Thun M. Cancer statistics. CA Cancer J Clin 2001;51:15-36.
(2) Travis WD, Travis LB & Devesa SS. Lung cancer. Cancer 1995;75:191-202.
(3) Sleeman JP. The lymph node as a bridgehead in the metastatic dissemination of tumors. Recent Results Cancer Res 2000;157:55–81.
(4) Pepper MS. Lymphangiogenesis and tumor metastasis: myth or reality? Clin Cancer Res 2001;7:462–8.
(5) Steeg PS, Bevilacqua G, Kopper L, Thorgeirsson UP, Talmadge JE, Liotta LA, et al. Evidence for a novel gene associated with low tumor metastatic potential. J Natl Cancer Inst 1988;80:200–4.
(6) Dong JT, Lamb PW, Rinker-Schaeffer CW, Vukanovic J, Ichikawa T, Isaacs JT, et al. KAI1, a metastasis suppressor gene for prostate cancer on human chromosome 11p11.2. Science 1995;268:884–6.
(7) Lee JH, Miele ME, Hicks DJ, Phillips KK, Trent JM, Weissman BE, et al. KiSS-1, a novel human malignant melanoma metastasis-suppressor gene. J Natl Cancer Inst 1996;88:1731–7.
(8) Leone A, Flatow U, VanHoutte K, and Steeg PS. Transfection of human nm23-H1 into the human MDA-MB-435 breast carcinoma cell line: effects on tumor metastatic potential, colonization and enzymatic activity. Oncogene 1993;8:2325–33.
(9) Seraj MJ, Samant RS, Verderame MF, and Welch DR. Functional evidence for a novel human breast carcinoma metastasis suppressor. BRMS1, encoded at chromosome 11q13. Cancer Res 2000;60:2764–69.
(10) Lee JH, and Welch DR. Suppression of metastasis in human breast carcinoma MDA-MB-435 cells after transfection with the metastasis suppressor gene KiSS-1. Cancer Res 1997;57:2384–87.
(11) Dong JT, Lamb PW, Rinker-Schaeffer CW, Vukanovic J, Ichikawa T, Isaacs JT, et al KAI1, a metastasis suppressor gene for prostate cancer on human chromosome 11p11.2. Science 1995;268:884–6.
(12) Takaoka A, Hinoda Y, Sato S, Itoh F, Adachi M, and Imai K Suppression of invasive properties of colon cancer cells by a metastasis suppressor KAI1 gene. Oncogene 1998;16:1443–53.
(13) Leone A, Flatow U, King CR, Sandeen MA, Margulies I M, Liotta LA, et al. Reduced tumor incidence, metastatic potential, and cytokine responsiveness of nm-23 transfected melanoma cells. Cell 1991;65:25–35.
(14) Kantor JD, McCormick B, Steeg PS, and Zetter BR. Inhibition of cell motility after nm23 transfection of human and murine tumor cells. Cancer Res 1993;53:1971–3.
(15) Gildea JJ, Seraj MJ, Oxford G, Harding MA, Hampton GM, Moskaluk CA, et al. RhoGDI2 is an invasion and metastasis suppressor gene in human cancer. Cancer Res 2002;62:6418-23.
(16) Lau LF, Lam SC. The CCN family of angiogenic regulators: the integrin connection Exp Cell Res 1999;248:44-57.
(17) Bork, P. The modular architecture of a new family of growth regulators related to connective tissue growth factor. FEBS Lett 1993;327:125-30.
(18) Bradham, D. M., Igarashi, A., Potter, R. L., and Grotendorst, G. R. Connective tissue growth factor: a cysteine-rich mitogen secreted by human vascular endothelial cells is related to the SRC-induced immediate early gene product CEF-10. J Cell Biol 1991;114:1285-94.
(19) Chu YW, Yang PC, Yang SC, Shyu YC, Hendrix MJ, Wu R, et al. Selection of invasion and metastatic subpopulations from a human lung adenocarcinoma cell line. Am J Respir Cell Mol Biol 1997;17:353-60.
(20) Travis WD, Colby TV, Corrin B, et al. Histological typing of lung and pleural tumors. 3rd ed. New York. Berlin: Germany Springer; 1999.
(21) Mountain CF. Revisions in the international system for staging lung cancer. Chest 1997;111:1710–7.
(22) Brookmeyer R, Crowley J. A confidence interval for the median survival time. Biometrics 1982;38:29–41.
(23) Hirasaki S, Koide N, Ujike K, Shinji T, Tsuji T. Expression of Nov, CYR61 and CTGF genes in human hepatocellular carcinoma. Hepatol Res 2001;19:294-305.
(24) Shih JY, Yang SC, Hong TM, Yuan A, Chen JJ, Yu CJ, et al. Collapsin response mediator protein-1 and the invasion and metastasis of cancer cells J Natl Cancer Inst 2001;93:1392-400.
(25) Pilarsky CP, Schmidt U, Eissrich C, Stade J, Froschermaier SE, Haase M, et al. Expression of the extracellular matrix signaling molecule Cyr61 is downregulated in prostate cancer. Prostate 1998;36:85-91.
(26) Bonner AE, Lemon WJ, You M. Gene expression signatures identify novel regulatory pathways during murine lung development: implications for lung tumorigenesis J Med Genet 2003;40:408-17.
(27) Tsai MS, Bogart DF, Castaneda JM, Li P, Lupu R. Cyr61 promotes breast tumorigenesis and cancer progression. Oncogene 2002;21:8178-85.
(28) Xu L, Corcoran RB, Welsh JW, Pennica D, Levine AJ. WISP-1 is a Wnt-1- and beta-catenin-responsive oncogene. Genes Dev 2000;14:585-95.
(29) Quinn CC, Gray GE, Hockfield S. A family of proteins implicated in axon guidance and outgrowth. J Neurobiol 1999;41:158-64.
(30) Hall C, Brown M, Jacobs T, Ferrari G, Cann N, Teo M, et al. Collapsin response mediator protein switches RhoA and Rac1 morphology in N1E-115 neuroblastoma cells and is regulated by Rho kinase. J Biol Chem 2001;276:43482-6.
(31) Leung T, Ng Y, Cheong A, Ng CH, Tan I, Hall C, et al. p80 ROKalpha binding protein is a novel splice variant of CRMP-1 which associates with CRMP-2 and modulates RhoA-induced neuronal morphology. FEBS Lett 2002;532:445-9.
(32) Keely P, Parise L, Juliano R. Integrins and GTPases in tumour cell growth, motility and invasion. Trends Cell Biol 1998;8:101-6.
(33) Jedsadayanmata A, Chen CC, Kireeva ML, Lau LF, Lam SC. Activation-dependent adhesion of human platelets to Cyr61 and Fisp12/mouse connective tissue growth factor is mediated through integrin alpha(IIb)beta(3). J Biol Chem 1999;274:24321-7.
(34) Leu SJ, Liu Y, Chen N, Chen CC, Lam SC, Lau LF. Identification of a novel integrin alpha 6 beta 1 binding site in the angiogenic Inducer CCN1 (CYR61). J Biol Chem 2003;278:33801-8.
(35) Nishida T, Kubota S, Fukunaga T, Kondo S, Yosimichi G, Nakanishi T, et al. CTGF/Hcs24, hypertrophic chondrocyte-specific gene product, interacts with perlecan in regulating the proliferation and differentiation of chondrocytes. J Cell Physiol 2003;196:265-75.
(36) Yamamoto T, Eckes B, Krieg T. Bleomycin increases steady-state levels of type I collagen, fibronectin and decorin mRNAs in human skin fibroblasts. Arch Dermatol Res 2000;292:556-61.
(37) Wang JF, Olson ME, Ball DK, Brigstock DR, Hart DA. Recombinant connective tissue growth factor modulates porcine skin fibroblast gene expression. Wound Repair Regen 2003;11:220-9.
(38) Inoki I, Shiomi T, Hashimoto G, Enomoto H, Nakamura H, Makino K, et al. Connective tissue growth factor binds vascular endothelial growth factor (VEGF) and inhibits VEGF-induced angiogenesis. FASEB J 2002;16:219-21.
(39) Abreu JG, Ketpura NI, Reversade B, De Robertis EM. Connective-tissue growth factor (CTGF) modulates cell signalling by BMP and TGF-beta. Nat Cell Biol 2002;4:599-604.
(40) Brigstock DR.The Connective Tissue Growth Factor/Cysteine- Rich 61/Nephroblastoma Overexpressed (CCN) Family. Endocr Rev 1999;20:189-206.
(41) Sakamoto K, Yamaguchi S, Ando R, Miyawaki A, Kabasawa Y, Takagi M, et al. The nephroblastoma overexpressed gene (NOV/ccn3) protein associates with Notch1 extracellular domain and inhibits myoblast differentiation via Notch signaling pathway. J Biol Chem 2002;277:29399-405.
(42) Freemantle SJ, Kerley JS, Olsen SL, Gross RH, Spinella MJ. Developmentally-related candidate retinoic acid target genes regulated early during neuronal differentiation of human embryonal carcinoma. Oncogene 2002;21:2880-9.
(43) Steffen CL, Ball-Mirth DK, Harding PA, Bhattacharyya N, Pillai S, Brigstock DR. Characterization of cell-associated and soluble forms of connective tissue growth factor (CTGF) produced by fibroblast cells in vitro. Growth Factors 1998;15:199-213.
(44) Ball DK, Rachfal AW, Kemper SA, Brigstock DR. The heparin-binding 10 kDa fragment of connective tissue growth factor (CTGF) containing module 4 alone stimulates cell adhesion. J Endocrinol 2003;176:1-7.
第三章參考文獻
(1) Sleeman JP. The lymph node as a bridgehead in the metastatic dissemination of tumors. Recent Results Cancer Res. 2000;157:55–81.
(2) Pepper MS. Lymphangiogenesis and tumor metastasis: myth or reality? Clin Cancer Res 2001;7:462–8
(3) Steeg PS, Bevilacqua G, Kopper L, Thorgeirsson UP, Talmadge JE, Liotta LA, et al. Evidence for a novel gene associated with low tumor metastatic potential. J Natl Cancer Inst 1988;80:200–4.
(4) Dong JT, Lamb PW, Rinker-Schaeffer CW, Vukanovic J, Ichikawa T, Isaacs JT, et al. KAI1, a metastasis suppressor gene for prostate cancer on human chromosome 11p11.2. Science 1995;268:884–6.
(5) Lee JH, Miele ME, Hicks DJ, Phillips KK, Trent JM, Weissman BE, et al. KiSS-1, a novel human malignant melanoma metastasis-suppressor gene. J Natl Cancer Inst 1996;88:1731–7.
(6) Leone A, Flatow U, VanHoutte K, and Steeg PS. Transfection of human nm23-H1 into the human MDA-MB-435 breast carcinoma cell line: effects on tumor metastatic potential, colonization and enzymatic activity. Oncogene 1993;8:2325–33.
(7) Seraj MJ, Samant RS, Verderame MF, and Welch DR. Functional evidence for a novel human breast carcinoma metastasis suppressor. BRMS1, encoded at chromosome 11q13. Cancer Res 2000;60:2764–69.
(8) Lee JH, and Welch DR. Suppression of metastasis in human breast carcinoma MDA-MB-435 cells after transfection with the metastasis suppressor gene KiSS-1. Cancer Res 1997;57:2384–87.
(9) Dong JT, Lamb PW, Rinker-Schaeffer CW, Vukanovic J, Ichikawa T, Isaacs JT, et al KAI1, a metastasis suppressor gene for prostate cancer on human chromosome 11p11.2. Science 1995;268:884–6.
(10) Takaoka A, Hinoda Y, Sato S, Itoh F, Adachi M, and Imai K Suppression of invasive properties of colon cancer cells by a metastasis suppressor KAI1 gene. Oncogene 1998;16:1443–53.
(11) Leone A, Flatow U, King CR, Sandeen MA, Margulies I M, Liotta LA, et al. Reduced tumor incidence, metastatic potential, and cytokine responsiveness of nm-23 transfected melanoma cells. Cell 1991;65:25–35.
(12) Kantor JD, McCormick B, Steeg PS, and Zetter BR. Inhibition of cell motility after nm23 transfection of human and murine tumor cells. Cancer Res 1993;53:1971–3.
(13) Gildea JJ, Seraj MJ, Oxford G, Harding MA, Hampton GM, Moskaluk CA, et al. RhoGDI2 is an invasion and metastasis suppressor gene in human cancer. Cancer Res 2002;62:6418-23.
(14) Chang CC, Shih JY, Jeng YM, Su JL, Lin BZ, Chen ST, Chau YP, Yang PC, Kuo ML. Connective tissue growth factor and its role in lung adenocarcinoma invasion and metastasis. J Natl Cancer Inst. 2004;96(5):364-75.
(15) Frisch, S. M. & Ruoslahti, E. Integrins and anoikis. Curr. Opin. Cell Biol.1997;9: 701–706.
(16) Frisch, S. M. & Screaton, R. A. Anoikis mechanisms. Curr. Opin. Cell Biol. 2001;13:555–562.
(17) Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 2000;100:57–70.
(18) Marais R, Wynne J, Treisman R. The SRF accessory protein Elk-1 contains a growth factor-regulated transcriptional activation domain. Cell 1993;73(2):381-93.
(19) Erisch SM and Screaton RA. Anoikis mechanisms. Current Opinion in Cell Biol 2001;13:555-62.
(20) Grossmann J. Molecular mechanisms of “detachment-induced apoptosis-Anoikis”. Apoptosis;2002;7:247-60.
(21) Zhan M, Zhao H and Han ZC. Signalling mechanisms of anoikis. Histol Histopathol.2004;19:973-83.
(22) Joseph LK and Kimchi A. Death-associated proteins: from gene identification to the analysis of their apoptotic and tumour suppressive functions. Mol Med Today. 1998;6(4):268-74.
(23) Katzenellenbogen RA, Baylin SB, and Herman JG. Hypermethylation of the DAP-kinase CpG island is a common alteration in B-cell malignancies. Blood 1999;93:4347–4353.
(24) Kissil JL, Feinstein E, Cohen O, Jones PA, Tsai YC. Knowles MA, Eydmann ME and Kimchi, A. DAPkinase loss of expression in various carcinoma and B-cell lymphoma cell lines: Possible implications for role as tumor suppressor gene. Oncogene 1997;15:403–7.
(25) Sanchez-Cespedes M, Esteller M, Wu L, Nawroz-Danish H, Yoo GH, Koch WM, Jen J, Herman JG, and Sidransky D. Gene promoter hypermethylation in tumors and serum of head and neck cancer patients. Cancer Res. 2000;60:892–5.
(26) Nakatsuka S, Takakuwa T, Tomita Y, Miwa H, Matsuzuka F, Aozasa K. Role of hypermethylation of DAP-kinase CpG island in the development of thyroid lymphoma. Lab Invest. 2000;80(11):1651-5.
(27) Esteller M, Sanchez-Cespedes M, Rosell R, Sidransky D, Baylin SB, and Herman JG Detection of aberrant promoter hypermethylation of tumor suppressor genes in serum DNA
from non-small cell lung cancer patients. Cancer Res 1999;59:67–70.
(28) Tang X, Khuri FR, Lee JJ, Kemp BL, Liu D, Hong WK, and Mao, L. Hypermethylation of the death-associated protein (DAP) kinase promoter and aggressiveness in stage I non-small-cell lung cancer. J. Natl. Cancer Inst. 2000;92:1511–6.
(29) Raveh T and Kimchi A. DAP Kinase—A Proapoptotic Gene That Functions as a Tumor Suppressor. Experimental Cell Research 2001;264:185–92.
(30) Esteller M. CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future. Oncogene 2002;21:5427-40.
(31) Ravel T, Droguett G, Horwitz MS, DePinho RA, and Kimchi A. DAP kinase activates a p19ARF/p53-mediated apoptotic checkpoint to suppress oncogenic transformation. Nat Cell Biol 2001;3:1-7.
(32) Inbal B, Cohen O, Polak-Charcon S, Kopolovic J, Vadai E, Eisenbach L, and Kimchi A. DAP kinase links the control of apoptosis to metastasis. Nature 1997;390:180-4.
(33) Wang WJ, Kuo JC, Yao CC, and Chen RH. DAP kinase induces apoptosis by suppressing integrin activity and disrupting matrix survival signals. J Cell Biol 2002;159(1):169-79.
(34) Jost M, Huggett TM, Kari C, and Rodeck U. Matrix-independent survival of human keratinocytes through an EGF receptor/MAPK-kinase-dependent pathway. Mol Biol Cell 2001;12:1519-27.
(35) Reginato MJ, Mills KR, Paulus JK, Lynch DK, Sgroi DC, Debnath J, Muthuswamy SK, Brugge JS Integrins and EGFR coordinately regulate the pro-apoptotic protein Bim to prevent anoikis. Nat Cell Biol. 2003;5(8):733-40.
(36) Wasylyk B, Hagman J, and Gutierrez-Hartmann A. Ets transcription factors: nuclear effectors of the Ras-MAP-kinase signaling pathway. TIBS 1998;23:213-6.
(37) Yang SH, Whitmarsh AJ, Davis RJ, and Sharrocks AD. Differential targeting of MAP kinases to the ETS-domain transcription factor Elk-1. EMBO 1998;17(6):1740-9.
(38) Yang SH, Vickers E, Brehm A, Kouzarides T, and Sharrocks AD. Temporal recruitment of the mSin3A-histone deacetylase corepressor complex to the ETS domain transcription factor, Elk-1. Mol Cell Biol 2001;21:2802–14.
(39) Yang SH, Bumpass DC, Perkins ND, and Sharrocks AD. The ETS domain transcription factor Elk-1 contains a novel class of repression domain. Mol Cell Biol 2002;22:5036–46.
(40) Yang SH and Sharrocks AD. Sumo promotes HDAC-mediated transcriptional repression. Molecular Cell 2004;13:611-7.
第四章參考文獻
(1) Peter Carmeliet & Rakesh K. Jain Angiogenesis in cancer and other diseases Nature 2000;407: 249-57.
(2) Peter Carmeliet Mechanisms of angiogenesis and arteriogenesis Nature Medicine 2000;6: 389–95.
(3) Gabriele Bergers, Laura E. Benjamin Angiogenesis: Tumorigenesis and the angiogenic switch. Nature Reviews Cancer 2003;3:401–10.
(4) Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 2000;100: 7–70.
(5) Fukumura D, Xavier R, Sugiura T. et al. Tumor induction of VEGF promoter activity in stromal cells. Cell 1998;94:715–25.
(6) Kerbel, R. S. Tumor angiogenesis: past, present and the near future. Carcinogenesis (Lond.), 2000;21: 505–15.
(7) Ferrara, N. Role of vascular endothelial growth factor in physiologic and pathologic angiogenesis: therapeutic implications. Semin. Oncol. 2002;29:10–4.
(8) Forsythe, J., Jiang, B-H., Iyer, N. V., Agani, F., Leung, S. W., Koos, R. D., and Semenza, G. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol. Cell. Biol. 1996;16: 4604–13.
(9) Semenza, G. L. HIF-1 and tumor progression: pathophysiology and therapeutics. Trends Mol. Med.2002; 8: S62–7.
(10) Yamamoto S, Yasui W, Kitadai Y, Yokozaki H, Haruma K, Kajiyama G, et al. Expression of vascular endothelial growth factor in human gastric carcinomas. Pathol Int 1998;48:499–506.
(11) Saito H, Tsujitani S, Kondo A, Ikeguchi M, Maeta M, Kaibara N. Expression of vascular endothelial growth factor correlates with hematogenous recurrence in gastric carcinoma. Surgery 1999;125:195–201.
(12) Kido S, Kitadai Y, Hattori N, Haruma K, Kido T, Ohta M, et al. Interleukin 8 and vascular endothelial growth factor—prognostic factors in human gastric carcinomas? Eur J Cancer 2001;37:1482–7.
(13) Cascinu S, Staccioli MP, Gasparini G, Giordani P, Catalano V, Ghiselli R, et al. Expression of vascular endothelial growth factor can predict event-free survival in stage II colon cancer. Clin Cancer Res 2000;6:2803–7.
(14) Bradham DM, Igarashi A, Potter RL, et al. Connective tissue growth factor: a cysteine-rich mitogen secreted by human vascular endothelial cells is related to the SRC-induced immediate early gene product CEF-10. J Cell Biol 1991;114:1285–94.
(15) Latinkic BV,O’Brien TP,Lau LF. Promoter function and structure of the growth factor-inducible immediate early gene cyr61. Nucleic Acids Res 1991; 19: 3261–7.
(16) Bork P. The modular architecture of a new family of growth regulators related to connective tissue growth factor. FEBS Lett 1993; 327: 125–30.
(17) Grotendorst GR. Connective tissue growth factor: A mediator of TGF-beta action on fibroblasts. Cytokine Growth Factor Rev 1997; 8: 171–9.
(18) Moussad EE, Brigstock DR. Connective tissue growth factor: What’s in a name? Mol Genet Metab 2000; 71: 276–92.
(19) Planque N, Perbal B. A structural approach to the role of CCN (CYR61/CTGF/NOV) proteinsin tumourigenesis. Cancer Cell Int. 2003 ;3:15.
(20) Shimo T, Nakanishi T, Kimura Y et al. Inhibition of endogenous expression of connective tissue growth factor by its antisense oligonucleotide and antisense RNA suppresses proliferation and migration of vascular endothelial cells. J Biochem (Tokyo) 1998; 124: 130–40.
(21) ShimoT, Nakanishi T, Nishida T et al. Connective tissue growth factor induces the proliferation, migration, and tube formation of vascular endothelial cells in vitro, and angiogenesis in vivo. J Biochem (Tokyo) 1999; 126: 137–45.
(22) Babic AM,Chen CC,Lau LF. Fisp12/mouse connective tissue growth factor mediates endothelial cell adhesion and migration through integrin alphavbeta3, promotes endothelial cell survival, and induces angiogenesis in vivo. Mol Cell Biol 1999; 19: 2958–66.
(23) Pan LH, Beppu T, Kurose A, Yamauchi K, Sugawara A, Suzuki M, Ogawa A, Sawai T. Neoplastic cells and proliferating endothelial cells express connective tissue growth factor (CTGF) in glioblastoma Neurol Res. 2002;24(7):677-83.
(24) Inoki I,Shiomi T,Hashimo to G et al. Connective tissue growth factor binds vascular endothelial growth factor (VEGF) and inhibits VEGF-induced angiogenesis. FASEB J 2002;16: 219–21.
(25) Hashimoto G, Inoki I, Fujii Y, Aoki T, Ikeda E, Okada Y. Matrix metalloproteinases cleave connective tissue growth factor and reactivate angiogenic activity of vascular endothelial growth factor 165. J Biol Chem. 2002;277(39):36288-95.
(26) Fahmy RG, Dass CR, Sun LQ, Chesterman CN, Khachigian LM. Transcription factor Egr-1 supports FGF-dependent angiogenesis during neovascularization and tumor growth. Nat Med 2003;9:1026-32.
(27) D'Amico TA. Angiogenesis in non-small cell lung cancer. Semin Thorac Cardiovasc Surg 2004;16(1):13-8.
(28) Gridelli C. Targeted therapies in the treatment of non small cell lung cancer: reality and hopes. Curr Opin Oncol 2004;16(2):126-9.
(29) Lee JW, Bae SH, Jeong JW, Kim SH, and Kim KW. Hypoxia-inducible factor (HIF-1)a: Its protein stability and biological functions. Exp Mol Med 2004;36(1):1-12.
(30) Chang CC, Shih JY, Jeng YM, Su JL, Lin BZ, Chen ST, Chau YP, Yang PC, Kuo ML. Connective tissue growth factor and its role in lung adenocarcinoma invasion and metastasis. J Natl Cancer Inst. 2004;96(5):364-75.
(31) Semenza GL, Jiang BH, Leung SW et al: Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. J Biol Chem, 1996;271:32529-37.
(32) Jiang BH, Zheng JZ, Leung SW et al: Transactivation and inhibitory domains of hypoxia-inducible factor 1(alpha): modulation of transcriptional activity by oxygen tension. J Biol Chem, 1997;272:19253-60.
(33) Wood SM, Gleadle JM, Pugh CW et al: The role of the aryl hydrocarbon receptor nuclear translocator (ARNT) in hypoxic induction of gene expression: studies in ARNT-deficient cells. J Biol Chem, 1996;271:15117-23.
(34) Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer, 2003;3:721-32.
(35) Kung AL, Wang S, Klco JM, Kaelin WG, Livingston DM. Suppression of tumor growth through disruption of hypoxia-inducible transcription. Nat Med, 2000;6”1335-40.
(36) Sun X, Kanwar JR, Leung E, Lehnert K, Wang D, Krissansen GW. Gene transfer of antisense hypoxia inducible factor-1 alpha enhances the therapeutic efficacy of cancer immunotherapy. Gene Ther, 2001;8:638-45.
(37) Cockman ME, Masson N, Mole DR, Jaakkola P, Chang GW, Clifford SC, Maher ER, Pugh CW, Ratcliffe PJ, Maxwell PH. Hypoxia inducible factor-alpha binding and ubiquitylation by the von Hippel-Lindau tumor suppressor protein. J Biol Chem 2000;275:25733-41.
(38) Jeong JW, Bae MK, Ahn MY, Kim SH, Sohn TK, Bae MH, Yoo MA, Song EJ, Lee KJ, Kim KW. Regulation and destabilization of HIF-1alpha by ARD1-mediated acetylation. Cell 2002;111:709-20.
(39) Kamura T, Sato S, Iwai K, Czyzyk-Krzeska M, Conaway RC, Conaway JW. Activation of HIF1alpha ubiquitination by a reconstituted von Hippel-Lindau (VHL) tumor suppressor complex. Proc Natl Acad Sci USA 2000;97:10430-5.
(40) Salceda S, Caro J. Hypoxia-inducible factor 1alpha (HIF- 1alpha) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. J Biol Chem 1997;272:22642-7.
(41) Sutter CH, Laughner E, Semenza GL. Hypoxia-inducible factor 1alpha protein expression is controlled by oxygen-regulated ubiquitination that is disrupted by deletions and missense mutations. Proc Natl Acad Sci USA 2000;97:4748-53.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39246-
dc.description.abstract惡性程度較高的癌細胞通常表現出較高的浸襲力,抗無貼附狀態細胞凋亡、血管新生及遠端轉移能力。一些CCN家族或成員已被報導可調控上述表現型,結締組織生長因子於正常肺膜上皮細胞表現量相當高,本論文在探究結締組織生長因子是否介入調控人類細胞轉移的能力。
過度表現結締組織生長因子於CL1-5及A549的人類肺腺癌細胞株能有意義地降低癌細胞的浸襲力及遠端肺轉移率,在結締組織生長因子轉殖株中,神經塌陷因子呈現有意義的上升。加入integrin αvβ3及αvβ5抑制劑能阻斷結締組織生長子造成的神經塌陷因子上升現象,而處理神經塌陷因子的反核數序列株,則可回復因結締組織生長因子造成的浸襲力降低。實驗中發現,單獨使用結締組織生長因子的CT功能區段便能造成神經塌陷因子增加,並有效抑制肺癌細胞的浸襲。臨床上分析結締組織生長因子蛋白表現量較低的病人,與癌病惡性度較高,有淋巴轉移,較早癌病復發率及較短存活時間有正相關。因為癌細胞轉移的第一個步驟是自原病灶脫離,而能與血路中存活,我們分析結締組織生長因子是否也在此步驟中扮演促進細胞凋亡的角色,而造成轉移的抑制。在第三章中,我們分析高表現結締組織生長因子的肺癌細胞株,對無貼狀態引起的細胞凋亡較明顯,而內生性的死亡相關蛋白量也較高。
在結締組織生長因子轉殖株中,死亡相關蛋白呈現有意義的上升,實驗中發現若轉殖死亡相關蛋白反序列質體入結締組織生長因子轉殖株,則可降低因無貼附狀態而誘發的細胞凋亡現象,且是經由抑制了ERK/Elk-1之訊息傳遞路徑,如同第二章的結果,只需CT區段的結締組織生長因子便能有效造成死亡相關蛋白的上升,而造成無貼附狀態的肺癌細胞株細胞凋亡。
根據之前的實驗結果,肺癌細胞病人腫瘤大小與結締組織生長因子的表現量有反相關,於是在第四章中,我們試圖探究結締組織生長因子與腫瘤發生及血管新生的關係。病患切片中可見高結締組織生長因子表現量的檢體,血管內皮生長因子及微血管的數量則明顯較低。細胞離體實驗則證明,結締組織生長因子蛋白能抑制血管內皮生長因子及缺氧誘發因子的蛋白及傳訊RNA的表現量。我們亦進行動物腫瘤生長及血管新生實驗來證明結締組織生長因子確能抑制血管新生現象,作用是藉由活化ARD1造成缺氧誘發因子基因的乙醯化,而使該蛋白趨向不穩定所致。
總結來說,本論文提供了結締組織生長因子可抑制人類肺腺癌轉移及血管新生的證據;作為一個癌細胞浸襲抑制蛋白,無貼附狀態細胞凋亡促進者,及血管新生抑制蛋白,結締組織生長因子作為臨床治療的蛋白質類藥物,是相當具潛力而可期待的。
zh_TW
dc.description.abstractAdvanced cancer cells show higher invasive, anti-anoikis, angiogenesis, and metastatic abilities. Several members of CCN [CTGF (connective tissue growth factor), Cyr61 (cysteine-rich 61), Nov (nephroblastoma overexpressed)] family can modulate these phenotypes of human carcinoma. CTGF is highly expressed in normal lung epithelium. We investigated the possibility that CTGF may regulate human lung adenocarcinoma metastasis activities.
Overexpression of CTGF in CL1-5 and A549 cells decreased invasiveness and lung metastasis relative to control cells. CTGF-mediated CRMP-1 (collapsin response mediator protein-1) up-regulation was also noted in CTGF transfected clones, and was inhibited by anti-integrin AvB3 and AvB5 antibodies. Significantly, suppression of CRMP-1 expression by antisense oligonucleotides increased invasive ability. We also clarified the CT domain of CTGF as the major component responsible for CRMP-1 up-regulation and invasion inhibition. Immunohistochemistry of lung cancer specimens showed that reduced expression of CTGF was statistically significantly associated with advanced disease, lymph node metastasis, early postoperative relapse, and shorter survival.
Because the first step of metastasis is to detach from the primary tumor mass and survive in the bloodstream, we analyzed several lung cancer cell lines which expressed different levels of CTGF undergo apoptosis in anoikis condition in order to understand whether CTGF is involved in anoikis regulation. In the chapter 3, we demonstrated that highly CTGF expressed cells showed increased sensitivity to anoikis, and were correlated with the expression of DAPK (death associated protein kinase), a newly identified protein kinase associated with apoptosis. We further found DAPK is upregulated in CTGF-overexpressed clones, and transiently transfected dominant-negative DAPK diminished DNA fragmentation after detachment in CTGF-overexpressed clones. The CT module of CTGF was also the region primarily responsible for the induction of DAPK via ERK/Elk-1 signaling pathway.
In chapter 4, due to the significant inverse correlation between CTGF expression and tumor size in lung adenocarcinoma patients ( P < 0.041 ), we investigated the angiogenic and tumorigenic potential of CTGF-overexpressed CL1-5 lung adenocarcinoma cells. We identified consistently inverse correlation between CTGF and VEGF (vascular endothelial growth factor) or CD31 staining in cancerous tissue than in adjacent noncancer part in lung adenocarcinoma patient. In vitro study showed that CTGF inhibited VEGF, and HIF-1a (hypoxia-inducible factor) mRNA and protein expression, and decreased HRE (hypoxia-response element) luciferase activities. We further identified that CTGF inhibited in vivo tumor growth and in vitro and in vivo angiogenesis of lung adenocarcinoma cell lines. At molecular level, CTGF inhibited HIF-1a expression via destabilization of HIF-1a by ARD1-mediated acetylation.
In summary, these studies provide evidences for the tumor metastasis suppressing effect of CTGF in the lung adenocarcinoma. Herein, as an invasion blocker, anoikis promoter and angiogenesis inhibitor that specifically targets cancer cells, CTGF has a unique potential for lung adenocarcinoma treatment.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T17:24:48Z (GMT). No. of bitstreams: 1
ntu-94-D90447001-1.pdf: 4340510 bytes, checksum: 4bec47cb0934ef31a0ba5424e3b181e1 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents中文摘要 (Abstract in Chinese) 3
英文摘要 (Abstract in English) 5
第一章 序論 (Introduction) 7
第一節 人類肺腺癌 (Human lung adenocarcinoma) 8
第二節 結締組織生長因子 (Connective tissue growth factor) 11
第三節 本論文的研究動機與方向 (Motivation and purpose in the thesis) 13
第四節 參考文獻 (Reference) 14
第二章 結締組織生長因子抑制人類肺腺癌細胞之浸襲及轉移 (Connective tissue growth
factor and its role in lung adenocarcinoma invasion and metastasis) 18
第一節 摘要 (Abstract) 19
第二節 前言 (Introduction) 21
第三節 材料與方法 (Materials and Methods) 23
第四節 實驗結果 (Results) 32
第五節 討論 (Discussion) 40
第六節 參考文獻 (Reference) 45
第七節 附圖及說明 (Figures and figure legends) 51
第三章 結締組織生長因子提高人類肺腺癌細胞對無貼附狀態之細胞凋亡敏感度 (Connective tissue growth factor increased human lung adenocarcinoma cells anoikis sensitivity) 65
第一節 摘要 (Abstract) 66
第二節 前言 (Introduction) 68
第三節 材料與方法 (Materials and Methods) 70
第四節 實驗結果 (Results) 80
第五節 討論 (Discussion) 92
第六節 參考文獻 (Reference) 96
第七節 附圖及說明 (Figures and figure legends) 101
第四章 結締組織生長因子透過促進缺氧誘發因子降解以抑制癌細胞之血管新生 (Connective tissue growth factor inhibited angiogenesis by accelerating HIF-1 degradation in human lung adenocarcinoma) 119
第一節 摘要 (Abstract) 120
第二節 前言 (Introduction) 122
第三節 材料與方法 (Materials and Methods) 124
第四節 實驗結果 (Results) 132
第五節 討論 (Discussion) 140
第六節 參考文獻 (Reference) 143
第七節 附圖及說明 (Figures and figure legends) 149
結語 (Conclusion) 164
附錄:已發表之論文(Publication list) 165
dc.language.isoen
dc.title結締組織生長因子於人類肺腺癌浸襲與轉移之角色zh_TW
dc.titleConnective Tissue Growth Factor and Its Role in Lung Adenocarcinoma Invasion and Metastasisen
dc.typeThesis
dc.date.schoolyear93-1
dc.description.degree博士
dc.contributor.oralexamcommittee施修明(Hsiu-Ming Shih),楊泮池(Pan-Chyr Yang),陳瑞華(Ruey-Hwa Chen),翁一鳴(Yat -Ming Yung),王朝鐘(Chau-Jong Wang)
dc.subject.keyword轉移,人類肺腺癌,結締組織生長因子,zh_TW
dc.subject.keywordCTGF,Lung adenocarcinoma,metastasis,en
dc.relation.page166
dc.rights.note有償授權
dc.date.accepted2005-01-26
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept毒理學研究所zh_TW
顯示於系所單位:毒理學研究所

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  目前未授權公開取用
4.24 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved