請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39238
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 鄭尊仁 | |
dc.contributor.author | Yu-Chen Lei | en |
dc.contributor.author | 雷侑蓁 | zh_TW |
dc.date.accessioned | 2021-06-13T17:24:41Z | - |
dc.date.available | 2005-02-03 | |
dc.date.copyright | 2005-02-03 | |
dc.date.issued | 2005 | |
dc.date.submitted | 2005-01-26 | |
dc.identifier.citation | Adamson I, Vincent R, Bjarnason SG.. Cell injury and interstitial inflammation in rat lung after inhalation of ozone and urban particulates, Am J Respir Cell Mol Biol. 20: 1067-1072., 1999
Amos AF, McCatry DJ, Zimmet P. The rising global burden of diabetes and its complications: estimates and projections to the year 2010. Diabet Med. 14 (suppl 5):S1-S85, 1997 Atkinson RW, Anderson HR, Sunyer J, Ayres J, Baccini M, Vonk JM, Boumghar A, Forastiere F, Forsberg B, Touloumi G, Schwartz J, Katsouyanni K. Acute effects of particulate air pollution on respiratory admissions: results from APHEA 2 project. Air Pollution and Health: a European Approach. Am J Respir Crit Care Med 164: 1860-1866, 2001 Backes JM, Howard PA, Moriarty PM. Role of C-reactive protein in cardiovascular disease. Ann. Pharmacother. 38: 110-118, 2004 Batalha JR, Saldiva PH, Clarke RW, Coull BA, Stearns RC, Lawrence J, Murthy CG, Koutrakis P, Godleski JJ.Concentrated ambient air particles induce vasoconstriction of small pulmonary arteries in rats. Environ. Health. Perspect. 110: 1191-1197, 2002 Bayness JW. Role of oxidative stress in development of complications in diabetes. Diabetes 1991; 40:405-412 Becher R, Hetland RB, Refsnes M, Dahl JE, Dahlman HJ, Schwarze PE. Rat lung inflammatory responses after in vivo and in vitro exposure to various stone particles. Inhal. Toxicol. 13: 789-805, 2001 Beckman JA, Creager MA, Libby P. Diabetes and atherosclerosis: epidemiology, pathophysiology, and management. JAMA. 15: 287:2570-2581, 2002 Bell RH, Hye RJ. Animal models of diabetes mellitus: physiology and pathology. J Surgical Res 35:433-460, 1983 Bermudez E, Mangum JB, Asgharian B, Wong BA, Reverdy E, Janszen DB, Hext PM, Warheit DB, Everitt JI. Long-term pulmonary responses of three laboratory rodent species to subchronic inhalation of pigmentary titanium dioxide particles. Toxicol Sci. 70: 86-97, 2002 Blackford JA, Jones W, Dey RD, Castranova V. Comparison of inducible nitric oxide synthase gene expression and lung inflammation following intratracheal instillation of silica, coal, carbonyl iron, or titanium dioxide in rats. J. Toxicol. Environ. Health. 51: 203-218, 1997 Blake GJ, Ridker PM. Inflammatory bio-markers and cardiovascular risk prediction. J. Intern. Med. 252: 283-294, 2002 Bouthillier L, Vincent R, Goegan P, Adamson IY, Bjarnason S, Stewart M, Guenette J, Potvin M, Kumarathasan P. Acute effects of inhaled urban particles and ozone: lung morphology, macrophage activity, and plasma endothelin-1. Am J Pathol. 153:1873-1884, 1998 Brook RD, Franklin B, Cascio W, Hong Y, Howard G, Lipsett M, Luepker R, Mittleman M, Samet J, Smith SC, Tager I. Air pollution and cardiovascular disease. Circulation 109:2655-2671, 2004 Brown DM, Stone V, Findlay P, MacNee W, Donaldson K. Increased inflammation and intracellular calcium caused by ultrafine carbon black is independent of transition metals or other soluble components. Occup. Enviorn. Med. 57:685-691, 2000 Brown DM, Wilson MR, MacNee W, Stone V, Donaldson K .Size-dependent proinflammatory effects of ultrafine polystyrene particle: a role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol. Appl. Phamacol. 175: 191-199, 2001 Brunekreef B, Holgate ST. Air pollution and health. Lancet 360:1233-1242, 2002 Brunekreef B, Kinney P, Ware JH, Dockery DW, Speizer FE, Spengler JD, Ferris BG, Sensitive subgroups and normal variation in pulmonary function response to air pollution episodes. Environ Health Perspect 90:189-193, 1991 Calderon-Garciduenas L, Wen-Wang, L, Zhang Y.J, Rodriguez-Alcaraz A, Osnaya N, Villarreal-Calderon A, Santella RM. 8-hydroxy-2'-deoxyguanosine, a major mutagenic oxidative DNA lesion, and DNA strand breaks in nasal respiratory epithelium of children exposed to urban pollution. Environ Health Perspect. 107: 469-474, 1999. Campen MJ,. Nolan JP, Schladweiler MC, Kodavanti UP, Costa DL, Watkinson WP. Cardiac and thermoregulatory effects of instilled particulate matter-associated transition metals in healthy and cardiopulmonary-compromised rats. J Toxicol Environ Health, Part A. 65: 1615-1631, 2002. Carney SL, Wong NL, Dirks JH. Acute effects of streptozotocin diabetes on rat renal function. J. Lab. Clin. Med. 93, 950-961, 1979 Carter JD, Ghio AJ, Samet JM, Develin RB. Cytokine production by human airway epithelial cells after exposure to an air pollution particle is metal-dependent, Toxicol Applied Pharm 146: 180-188, 1997 Chan CC, Chuang KJ, Shiao GM, Lin LY. Personal exposure to submicrometer particles and heart rate variability in human subjects. Environ Health Perspect. 112: 1063-1067, 2004 Chang KS, Lund DD. Alterations in the baroreceptor reflex control of heart rate in strepotozotocin diabetic rats. Mol Cell Cardiol 18:617-624, 1986 Chang CC, Hwang JS, Chan CC, Wang PY, Hu YW, Cheng TJ. Effects of Concentrated Ambient Particles on Heart Rate Variability in Spontaneously Hypertensive Rats. (submitted) Chen S, Waller MA, Barnhart MI. Effects of diesel engine exhaust on pulmonary alveolar macrophages. Scanning Electron Microsc 3: 327-338, 1980 Chen YS, Sheen PC, Chen ER, Liu YK, Wu TN, Yang CY. Effects of Asian dust storm events on daily mortality I Taipei, Taiwan . Environ Res. 95: 151-155, 2004 Cheng TJ, Hwang JS, Wang PY, Tsai CF, Chen CY, Lin SH, Chan CC. Effects of concentrated ambient particles on heart rate and blood pressure in pulmonary hypertensive rats. Environ Health Perspect 111: 147-50, 2003 Churg A, The uptake of mineral particles by pulmonary epithelial cell. Am. J. Respir. Crit. Care Med. 154: 1124-1140, 1996 Clarke RW, Catalane PJ, Koutrakis P, Krishna M, Sioiutas C, Paulauskis SJ. Urban air particulate inhalation alters pulmonary function and induces pulmonary inflammation in a rat model of chronic bronchitis, Inhal Toxicol 11: 637-656, 1999 Clarke RW, Coull B, Reinisch U, Catalano P, Killingsworth R, Koutrakis P, Kavouras I, Murthy GGK, Lawrence J, Lovett E, Wolfson M, Verrier RL, Godleski, JJ. Inhaled concentrated ambient particles are associated with hematologic and bronchoalveolar lavage changes in canines, Environ Health Perspect 108: 1179-1187, 2000 Clarke RW, Coull B, Reinisch U, Catalano P, Killingsworth CR, Koutrakis P, Kavouras I, Murthy GG, Lawrence J, Lovett E, Wolfson JM, Verrier RL, Godleski JJ. Inhaled concentrated ambient particles are associated with hematologic and bronchoalveolar lavage changes in canines. Environ Health Perspect. 108:1179-87, 2000 Devlin RB, Ghio AJ, Kehrl H, Sanders G, Cascio W. Elderly humans exposed to concentrated air pollution particles have decreased heart rate variability. Eur Respir J Suppl. 40:76s-80s, 2003 De Vriese AS, Verbeuren TJ, Van de Voorde J, Lameire NH, Vanhoutte PM. Endothelial dysfunction in diabetes. Br J Pharmacol. 130:963-974, 2000 Dincer Y, Akcay T, Alademir Z, Ilkova H. Assessment of DNA base oxidation and glutathione level in patients with type 2 diabetes. Mutat. Res. 525: 129-130, 2003 Don Porto Carero A, Hoet PH, Verschaeve L, Schoeters G, Nemery B. Genotoxic effects of carbon black particles, diesel exhaust particles, and urban air particulates and their extracts on a human alveolar epithelial cell line (A549) and a human monocytic cell line (THP-1). Environ Mol Mutagen 37: 155-163, 2001. Donaldson K, Beswich PH., Glimour PS. Free radical activity associated with the surface of particles: a unifying factor in determining biological activity? Toxicol Lett 88: 293-298, 1996. Donaldson K, Brown DM, Mitchell C, Dineva M, Beswick PH, Gilmour P, MacNee W. Free radical activity of PM10: iron-mediated generation of hydroxyl radicals.Environ Health Perspect. 105 Suppl 5:1285-1289, 1997 Donaldson K., Brown D., Clouter A., Duffin R., MacNee W., Fenwick L., Tran L., Stone V. The pulmonary toxicology of ultrafine particles. J Aerosol Med 15: 32-220, 2002 Donaldson K, Stone V, Tran CL, Kreyling W, Borm PJ. Nanotoxicology. Occup Environ Med. 61:727-728, 2004 Dreher K, Jaskot R, Lehmann J, Richards J, McGee J, Ghio A, Costa D. Soluble transition metals mediate residual oil fly ash induced acute injury, J Toxicol Environ Health 50: 285-305, 1997 Driscoll KE. Role of inflammation in the development of rat lung tumors in response to chronic particle exposure. Inhal Toxicol 8 (suppl): 139-153, 1996 Driscoll KE, Costa DL, Hatch G, Henderson R, Oberdorster G, Salem H, Schlesinger R. Intratracheal instillation as an exposure technique for the evaluation of respiratory tract toxicity: uses and limitations. Toxicol Sci. 55: 24-35, 2000 Dye JA, Lehmann JR, McGee JK, Winsett DW, Ledbetter AD, Everitt JI, Ghio AJ, Costa DL. Acute pulmonary toxicity of particulate matter filter extracts in rats: coherence with epidemiologic studies in Utah Valley residents. Environ Health Perspect. 109 Suppl 3:395-403, 2001 Elder A, Gelein R, Finkelstein J, Phipps R, Frampton M, Utell M, Kittelson DB, Watts WF, Hopke P, Jeong CH, Kim E, Liu W, Zhao W, Zhuo L, Vincent R, Kumarathasan P, Oberdorster G. On-road exposure to highway aerosols. 2. Exposures of aged, compromised rats. Inhal Toxicol. 16 Suppl 1:41-53, 2004 Ferin J, Oberdorster G., Penny DP. Pulmonary retention of ultrafine and fine particle in rats. Am. J. Respir. Crit. Care Med. 6:535-543, 1992 Ferin J. Pulmonary retention and clearance of particles. Toxicol Letters 72:121-125, 1994 Gauderman WJ, Avol E, Gilliland F, Vora H, Thomas D, Berhane K, McConnell R, Kuenzli N, Lurmann F, Rappaport E, Margolis H, Bates D, Peters J. The effect of air pollution on lung development from 10 to 18 years of age. N Engl J Med. 351:1057-1067, 2004 Gardner S, Lehmann J, Costa D. Oil fly ash-induced elevation of plasma fibrinogen levels in rats, Toxicol Sci 56:175-180, 2000 Ghio AJ, Devlin RB. Inflammatory lung injury after bronchial instillation of air pollution particles. Am J Respir Crit Care Med.164:704-708, 2001 Ghio AJ, Hall A, Bassett MA, Cascio WE, Devlin RB. Exposure to concentrated ambient air particles alters hematologic indices in humans. Inhal Toxicol. 15:1465-1478, 2003 Giugliano D, Ceriello A, Paolisso G. Oxidative stress and diabetic vascular complications. Diabetes Care. 19:257-267, 1996 Gilmour PS, Ziesenis A, Morrison ER, Vickers MA, Drost EM, Ford I, Karg E, Mossa C, Schroeppel A, Ferron GA, Heyder J, Greaves M, MacNee W, Donaldson K. Pulmonary and systemic effects of short-term inhalation exposure to ultrafine carbon black particles. Toxicol. Appl. Phamacol 195: 35-44, 2004 Gold DR, Litonjua A, Schwartz J, Lovett E, Larson A, Nearing B, Allen G, Verrier M, Cherry R, Verrier R. Ambient pollution and heart rate variability. Circulation 101:1267-1273, 2000 Goldberg MS, Burnett RT, Bailar JC III, et al., The association between daily mortality and ambient air particle pollution in Montreal, Quebec. 2. Cause-specific mortality. Environ Res. 86:26-36, 2001 Goldsmith CA, Ning Y, Qin G, Imrich A, Lawrence J, Murthy GG, Catalano PJ, Kobzik L. Combined air pollution particle and ozone exposure increases airway responsiveness in mice. Inhal. Toxicol. 14: 325-347, 2002. Gong H, Linn WS, Sioutas C, Terrell SL, Clark KW, Anderson KR, Terrell LL Controlled exposures of healthy and asthmatic volunteers to concentrated ambient fine particles in Los Angeles. Inhal Toxicol. 15: 305-325, 2003 Gong H , Linn WS, Terrell SL, Clark KW, Geller MD, Anderson KR, Cascio WE, Sioutas C. Altered heart-rate variability in asthmatic and healthy volunteers exposed to concentrated ambient coarse particles. I nhal Toxicol. 16:335-43, 2004 Gordon T, Nadziejko C, Schlesinger R, Chen LC. Pulmonary and cardiovascular effects of acute exposure to concentrated ambient particulate matter in rats, Toxicol Lett 96-97: 285-288, 1998 Gupta T, Demokritou P, Koutrakis P. Development and performance evaluation of a high-volume ultrafine particle concentrator for inhalation toxicological studies. Inhal Toxicol. 16:851-862, 2004 Guzik TJ, Korbut R, Adamek-Guzik T. Nitric oxide and superoxide in inflammation and immune regulation. J. Physiol Pharmacol. 54: 469-487, 2003 Haak T, Jungmann E, Felber A, Hillmann U, Usadel KH. Increased plasma levels of endothelin in diabetic patients with hypertension. Am. J. Hypertens. 5: 161-166, 1992 Hamada K, Goldsmith CA, Goldman A, Kobzik L. Airway hyperresponsiveness caused by aerosol exposure to residual oil fly ash leachate in mice. J Tocixclogy and Environmental Health A. 65:1351-1365, 2002 Hartwig A. Role of DNA repair in paritlce- and fiber-induced lung injury. Inhal Toxicl. 14: 91-100, 2002. Hoek G., Brunekreef B. Acute effects of a winter air pollution episodes on pulmonary function and respiratory symptoms of children. Arch Environ Health 48:328-335, 1993 Hopfner RL, Gopalakrishnan V. Endothelin: emerging role in diabetic vascular complications. Diabetologia. 42:1383-1394, 1999 Huang YC, Ghio AJ, Stonechuerner J, McGee J, Carter JD, Grambow SC, Devlin RB. The role of soluble components in ambient fine particles-induced changes in human lungs and blood. Inhal Toxcicol 15:327-342, 2003 Huang SL, Hsu MK, Chan CC. Effects of submicrometer particle compositions on cytokine production and lipid peroxidation of human bronchial epithelial cells. Environ Health Perspect.111: 478-82. 2003 Huang JS, Chan CC. Effects of air pollution on daily clinic visits for lower respiratory tract illness. Am J Epidemiol 155: 11-5, 2002. Hyde DM, Plopper CG, Weir AJ, Murnance RD, Warren DL, Last JA, Pepelko WE. Peribronchoiolar fibrosis in lungs of cats chronically exposed to diesel exhaust. Lab Invest 52: 195-206, 1985 Heath D. The rat is a poor model for the study of human pulmoanry hypertension. Cardioscience. 3:1-6, 1992. Heinrich U, Muhle H, Takenaka S, Ernst H, Fuhst R, Mohr U, Pott F, Stober W. Chronic effects on the respiratory tract of hamsters, mice and rats after long-term inhalation of high concentrations of filtered and unfiltered diesel engine emissions. J Toxicol Environ Health 6: 383-395, 1986 Imaeda A, Kaneko T, Aoki T, Kondo T, Nagase H. DNA damage and the effect of antioxidants in strepotozotocin-treated mice. Food. Chem. Toxicol. 40: 979-987, 2002 Jager A, van Hinsbergh VW, Kostense PJ, Emeis JJ, Yudkin JS, Nijpels G, Dekker JM, Heine RJ, Bouter LM, Stehouwer CD. von Willebrand factor, C-reactive protein, and 5-year mortality in diabetic and nondiabetic subjects: the Hoorn Study. Arterioscler. Thromb. Vasc. Biol. 19: 3071-3078, 1999 Kodavanti UP., Costa DL., Bromnerg PA. Rodent models of cardiovascular disease: their potential applicability in studies of air pollutant susceptibility. Environ Health Perspect.106 (suppl1)111-130, 1998 Kodavanti UP, Jackson MC, Ledbetter AD, Richards JR, Gardner SY, Watkinson WP, Campen MJ., Costa DL. Lung injury from intratracheal and inhalation exposures to residual oil fly ash in a rat model of monocrotaline-induced pulmonary hypertension. J Toxicol Environ Health, Part A. 57: 101-121, 1999. Kodavanti UP, Jackson MC, Ledbetter AD, Starcher BC, Evansky PA, Harewood A, Winsett DW, Costa DL.. The combination of elastase and sulfur dioxide exposure causes COPD-like lesions in the rat. Chest. 117(Suppl 1):299S-302S, 2000. Kodavanti UP, Schladweiler MC, Ledbetter AD, Watkinson WP, Campen MJ, Winsett DW, Richards JR, Crissman KM, Hatch GE, Costa DL. The spontaneously hypertensive rat as a model of human cardiovascular disease: Evidence of exacerbated cardiopulmonary injury and oxidative stress from inhaled emission particulate matter. Toxicol. Appl. Pharmacol.164:250-263, 2000 Kodavanti UP, Schladweiler MC, Ledbetter AD, Hauser R, Christiani DC, McGee J, Richards JR, Costa DL, Temporal association between pulmonary and systemic effects of particulate matter in healthy and cardiovascular compromised rats. J Toxicol Environ Health, Part A. 65: 1545-1569, 2002. Kreyling WG, Scheuch G. Clearance of particles deposited in the lungs. In Heyder and Gehr eds. Particle Lung Interacitions. Marcel Dekker, New York, 323-376, 2000 Kubes P, Suzuki M, Granger DN. Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci U S A. 88:4651-4655, 1991 Kwon HJ, Cho SH, Chun Y, Lagarde F, Pershagen G.. Effects of the Asian dust events on daily mortality in Seoul, Korea. Environ. Res. 90: 1-5, 2002 Lawrence JM. Oxyradicals and DNA damage. Carcinogenesis 21: 361-370, 2000 Lechleitner M, Koch T, Herold M, Dzien A, Hoppichler F. Tumour necrosis factor-alpha plasma level in patients with type 1 diabetes mellitus and its association with glycaemic control and cardiovascular risk factors. J. Intern. Med. 248: 67-76, 2000 Lei YC, Chan CC, Wang PY, Cheng TJ*. Effects of dust storm particles on inflammation markers in peripheral blood and bronchoalveolar lavage in pulmonary hypertensive rats. Environ Res. 95:71-76, 2004a Lei YC, Chen MC, Chan CC, Wang PY, Lee CT, Cheng TJ*. Effects of concentrated ambient particles on airway responsiveness and pulmonary inflammation in pulmonary hypertensive rats. Inhal Toxicol. 16: 785-792 2004b Lei YC, Cheng TJ. Association of particle surface area with oxidative stress, lung inflammation and oxidative DNA damage in pulmonary hypertensive rats. (submitted) Lei YC, Hwang JS, Chang CC, Lee CT, Cheng TJ. Enhanced oxidative stress and endothelial dysfunction in streptozotocin-diabetic rats exposed to fine particles. (submitted) Lenton KJ, Therriault H, Cantin A.M, Fulop T, Payette H, Wagner JR. Direct correlation of glutathione and ascorbate and their dependence on age and season in human lymphocytes. Am J. CLin Nutr. 71:1194-1200, 2000 Lerman A, Edwards BS, Hallett JW, Heublein DM., Sanberg SM, Burnett JC. Circulating and tissue endothelin immunoreactivity in advanced atherosclerosis. N. Engl. J. Med. 325: 997-1001, 1991 Libby P. Changing concepts of atherogenesis. J Intern Med. 247:349-358, 2000 Li N, Kim S, Wang M, Froines J, Sioutas C, Nel A. Use of a stratified oxidative stress model to study the biological effects of ambient concentrated and diesel exhaust particulate matter. Inhal Toxicol. 14: 459-486, 2002. Li XY, Gilmour PS, Donaldson K, MacNee W. Free radical activity and pro-inflammatory effects of particulate air pollution (PM10) in vivo and in vitro.Thorax. 51:1216-1222, 1996 Li XY, Gilmour PS, Donaldson K, MacNee W. In vivo and in vitro proinflammatory effects of particulate air pollution (PM10). Environ. Health. Perspect. 105 Suppl 5: 1279-83, 1997 Li XY, Brown D, Smith S, MacNee W, Donaldson K. Inflammatory responses following intratracheal instillation of fine and ultrafine carbon black in rats. Inhal Toxicol. 11:709-731, 1999 Linson D, Lardot C, Huaux F, Zanetti G, Fubini B. Influence of particle surface area on the toxicity of insoluble manganese dioxide dusts. Arch. Toxicol. 71: 725-729, 1997 Loft S, Poulsen HE. Cancer risk and oxidative DNA damage in man, J. Mol. Med. 74: 297-312, 1996 Mann JK, Tager IB, Lurmann F, Segal M, Quesenberry CP Jr, Lugg MM, Shan J, Van Den Eeden SK. Air pollution and hospital admissions for ischemic heart disease in persons with congestive heart failure or arrhythmia. Environ Health Perspect. 110: 1247-1252, 2002 Maritim AC, Sanders RA, Watkins JB. Diabetes, oxidative stress, and antioxidants: a review. J. Biochem. Mol. Toxicol. 17: 24-38, 2003 Meister A, Anderson ME, Glutathione, Annual Review of Biochemistry, 52: 711-760, 1983 Michel RP, Langleben D, Dupuis J. The endothelin system in pulmonary hypertension. Can J Physiol Pharmacol. 81:542-554, 2003 Michael JR, Markewitz BA. Endothelins and the lung. Am. J. Respir. Crit. Care. Med. 154: 555-581, 1996 Monn C, Becker S. Cytotoxicity and induction of proinflammatory cytokines from human monocytes exposed to fine (PM2.5) and coarse particles (PM10-2.5) in outdoor and indoor air, Toxicol Appl Pharmacol 155: 245-252, 1999 Nadadur SS, Kodavanti UP. Altered gene expression profiles of rat lung in response to an emission particulate and its metal constituents. J Toxicol Enviorn Health, Part A. 65:1333-1350, 2002 Nemmar A., Vanbilloen H., Hoylaserts M.F., Hoet P.H.M., Vanquickenborne B., Nermery B. Passage of intratracheally instilled ultrafine particles form the lung into the systemic circulation in hamster. Am. J. Respir. Crit. Care Med. 164:1665-1668, 2001 Nemmar A, Hoylaserts MF, Hoet PHM, Dinsdale D, Smith T, Xu H, Vermylen J, Nermery B. Ultrafine particles affect experimental thrombosis in an in vivo hamster model. Am. J. Respir. Crit. Care Med. 166: 998-1004, 2002a Nemmar A, Hoet PHM, Vanquickenborne B, Dinsdale D, Thomeer M, Hoylaserts MF, Vanbilloen H, Mortelmans L, Nermery B. Passage of inhaled particles into the blood circulation in humans. Circulation 105: 411-414, 2002b Nemmar A, Peter HM, Dinsdale D, Vermylen J, Hoylaerts MF, Nemery B. Diesel exhaust particles in lung acutely enhance experimental peripheral thrombosis. Circulation 107: 1202-1208, 2003 Nishikawa T, Sasahara T, Kiritoshi S, Sonoda K, Senokuchi T, Matsuo T, Kukidome D, Wake N, Matsumura T, Miyamura N, Sakakida M, Kishikawa H, Araki E. Evaluation of urinary 8-hydroxydeoxy-guanosine as a novel biomarker of macrovascular complications in type 2 diabetes. Diabetes. Care. 26: 1507-1512, 2003 Norwood J, Ledbetter AD, Doerfler DL, Hatch G.E. Residual oil fly ash inhalation in guinea pigs: influence of absorbate and glutathione depletion. Toxicol. Sci. 61:144-153, 2001 Oberdorster G, Gelein RM, Ferin J, Weiss B. Association of particle air pollution and acute mortality: involvement of ultrafine paricles? Inhal Toxicl. 7:111-124, 1995 Oberdorster G, Finkelstein J, Ferin J, Goleski J, Chang LY, Gelein R, Johnson C, Crapo JD. Ultrafine particles as a potential environment hazard. Chest 109:68S-69S, 1996 Oberdorster G. Pulmonary effects of inhaled ultrafine particles, Int Arch Occup Environ Health. 74:1-8, 2001 Packer R, Bergler-Klein J, Globits S, Teufelsbauer H, Schuller M, Krauter A, Ogris E, Rodler S, Wutte M, Hartter E. Plasma big endothelin-1 concentrations in or congestive heart failure patients with or without systemic hypertension. Am. J. Cardiol. 71: 1293-1299, 1993 Park KS, Kim JH, Kim MS, Kim JM, Kim SK, Choi JY, Chung MH, Han B, Kim SY, Lee HK. Effects of insulin and antioxidant on plasma 8-hydrozyguanine and tissue 8-hydrozyguanosine in streptozotocin-induced diabetic rats. Diabetes, 50: 2837-2841, 2001 Peters A, Dockery DW, Heinrich J, Wichmann HE. Medication use modifies the health effects of particulate sulfate air pollution in children with asthma. Environ. Health. Perspect. 105: 430-435, 1997a Peters A, Wichmann HE, Tuch T, Heinrich J, Heyder J. Respiratory effects are associated with the number of ultrafine particles. Am. J. Respir. Crit. Care. Med. 155: 1376-1383, 1997b Peters A, Perz S, Doring A, Stieber J, Koenig W, Wichmann HE.Increases in heart rate during an air pollution episode. Am J Epidemiol 150: 1094-1098, 1999. Peters A, Liu E, Verrier RL, Schwartz J. Gold DR, Mittleman M, Baliff J, Oh RA, Allen G., Monahan K, Dockery DW. Air pollution and incidence of cardiac arrhythmia. Epidemiology 11:11-17, 2000 Peters A, Dockery DW, Muller JE, Mittleman MA. Increased particulate air pollution and triggering of myocardial infarction. Circulation 103:2810-2815, 2001 Pickup JC. Inflammation and activated innate immunity in the pathogenesis of type 2 diabetes. Diabetes. Care. 27: 813-823, 2004 Pope III CA, Dockery DW, Spengler JD, Raizenne ME. Respiratory heatlh and PM10 pollution: a daily time series analysis. Am Rev Respir Dis. 144:668-674, 1991 Pope III CA, Dockery DW. Epidemiology of particle effects. In: Air Pollution and Health (Holgate ST, Samet JM, Koren HS, Maynard RL, eds.). London: Academic Press 673-705., 1999 Pope III CA, Dockery DW, Kanner RE, Villegas M, Schwartz J. Oxygen saturation, pulse rate, and particulate air pollution. Am J Respir Crit Care Med 159:365-372, 1999 Pope III CA, Burnett RT, Thun MJ, Calle EE, Krewski D, Ito K.. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution, JAMA 287: 1132-1141, 2002 Pope III CA, Hansen ML, Long RW, Nielsen KR, Eatough NL, Wilson WE, Eatough DJ. Ambient particulate air pollution, heart rate variability, and blood markers of inflammation in a panel of elderly subjects. Environ. Health. Perspect. 112: 339-345, 2004 Prahalad AK, Soukup JM, Inmon J, Willis R, Ghio AJ, Becker S, Gallagher JE. Ambient air particles: effects on cellular oxidant radical generation in relation to particulate elemental chemistry. Toxicol Appl Pharmacol. 158:81-91, 1999 Radomski MW, Palmer RM, Moncada S. Endogenous nitric oxide inhibits human platelet adhesion to vascular endothelium.Lancet.;2:1057-1058, 1987 Rahman I and MacNee W. Role of transcription factors in inflammatory lung diseases. Thorax 53:601-602, 1998 Rankin JA. Biological mediators of acute inflammation. AACN Clin Issues. 15: 3-17, 2004 Rathmann W, Ziegler D, Jahnke M, Haastert B, Gries FA. Mortality in diabetic patients with cardiovascular autonomic neuropathy. Diabet Med. 10:820-824, 1993 Renwick LC, Brown D, Clouter A, Donaldson K. Increased inflammation and altered macrophage chemotactic responses caused by two ultrafine particles. Occup Environ Med. 61: 442-447, 2004 Resnick, H.E., Howard, B.V. 2002. Diabetes and cardiovascular disease. Annu. Rev. Med. 53, 245-267, 2002 Risom L, Marianne D, bornholdt J, Vogel U, Wallin H, Moller P, Loft S. Oxidative DNA damage and defense gene expression in the mouse lung after short-term exposure to diesel exhaust particles by inhalation. Carcinogesis, in press. 2003 Ryu JK, Kim DJ, Lee T, Kang YS, Yoon SM, Suh JK. The role of free radical in the pathogenesis of impotence in streptozotocin-induced diabetic rats. Yonsei, Med. J. 44: 236-241, 2003 Samet JM, Dominici F, Curriero FC, Coursac I, Zeger SL. Fine particulate air pollution and mortality in 20 U.S. cities, 1987-1994, N Engl J Med 343: 1742-1749, 2000 Sarkar R, Meinberg EG, Stanley JC, Gordon D, Webb RC. Nitric oxide reversibly inhibits the migration of cultured vascular smooth muscle cells. Circ Res.78:225-230, 1996 Schalkwijk CG, Poland DC, van Dijk W, Kok A, Emeis JJ, Drager AM, Doni A, van Hinsbergh, VW, Stehouwer CD. Plasma concentration of C-reactive protein is increased in type I diabetic patients without clinical macroangiopathy and correlates with markers of endothelial dysfunction: evidence for chronic inflammation. Diabetologia. 42: 351-357, 1999 Schiffrin EL, Intengan HD, Thibault G, Touyz RM. Clinical significance of endothelin in cardiovascular disease. Curr. Opin. Cardiol. 12: 354-367, 1997 Schram MT, Chaturvedi N, Schalkwijk C, Giorgino F, Ebeling P, Fuller JH, Stehouwer CD, EURODIAB Prospective Complications Study. Vascular risk factors and markers of endothelial function as determinants of inflammatory markers in type 1 diabetes: the EURODIAB Prospective Complications Study. Diabetes. Care.26: 2165-2173, 2003 Schwartz J. Air pollution and daily mortality: a review and meta analysis. Environ Res. 64:36-52, 1994 Schwartz J. Air pollution and blood markers of cardiovascular risk. Environ Health Perspect 109:405-409, 2001 Seaton A, MacNee W, Donaldon K, Godden D. Particulate air pollution and acute health effects. Lancet 345: 176-178, 1995 Seaton A, Soutar A, Crawford V, Elton R, McNerlan S, Cherrie J, Watt M, Agius R, Stout R.Particulate air pollution and the blood. Thorax. 54: 1027-1032, 1999 Service RF. Nanotoxicology. Nanotechnology grows up. Science 304:1732-1734, 2004 Singh JP, Larson MG, O’Donnell CJ. Et al., Association of hyperglycemia with reduced heart rate variability (The Framingham Heart Study). Am J Caridiol 86:309-312, 2000 Sioutas C, Koutrakis P, Burton R.M. A technique to expose animals to concentrated fine ambient aerosols. Environ. Health Perspect. 103 : 172-177, 1995 Sioutas C, Koutrakis P, Godleski JJ, Ferguson ST, Kim C, Burton R.M. Fine particle concentrators for inhalation exposures-effect of particle size and composition. J Aerosl Sci 28 : 1057-1071, 1997 Sioutas C, Kim S, Chang M. Development and evaluation of a prototype ultra-fine particle concentrator, J Aerosol Med 30: 1001-1017, 1999 Somova L, Dashev G, Doncheva M, Vassileva M. Pathogenesis of cardiovascular disorders in streptozotocin-induced diabetes in rat. I. Cardiovascular, renal and morphologic changes in different stages of diabetes. Acta. Physiol. Pharmacol. Bulg. 14: 46-56, 1988 Sorensen M, Autrup H, Hertel O, Wallin H, Knudsen LE, Loft S. Personal exposure to PM2.5 and biomarkers of DNA damage. Cancer Epidemiol Biomarkers Prev. 12: 191-196, 2003. Spranger J, Kroke A, Mohlig M, Hoffmann K, Bergmann MM, Ristow M, Boeing H, Pfeiffer AF. Inflammatory cytokines and the risk to develop type 2 diabetes: results of the prospective population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Diabetes. 52:812-817, 2003 Stee JJ, Silberthatz H, Tofler GH, et al. Association of fibrinogen with cardiovascular risk factors and cardiovascular disease in the Framingham Offspring Study. Circulation 102:1634-1638, 2000 Stone V, Shaw J, Brown DM, MacNee W, Faux SP, Donaldosn K. The role of oxidative stress in the prolonged inhibitory effect of ultrafine carbon black on epithelial cell function. Toxicology in Vitro 12:649-659, 1998 Stone V, Tuinman M, Vamvakopoulos JE, Shaw J, Brown DM, Petterson S, Faux SP, Borm P, MacNee W, Michaelangeli F, Donaldosn K. Increased calcium influx in a monocytic cell line on exposure to ultrafine carbon black. Eur. Respir. J. 15: 297-303,2000 Stringer B, Kobzik L. Environmental particulate-mediated cytokine production in lung epithelial cells (A549): role of preexisting inflammation and oxidant stress.J Toxicol Environ Health A. 55:31-44., 1998 Strom KA. Response of pulmonary cellular defenses to the inhalation of high concentration of diesel exhaust. J Toxicol Environ Health 13: 919-944, 1988 Strom KA, Garg BD, Johnson JT, Smiler KL. Inhaled particle retention in rats receiving low exposures of diesel exhaust. J Toxicol Environ Health 29: 377-398, 1990 Tao F, Gonzalez-Flecha B, Kobzik L. Reactive oxygen species in pulmonary inflammation by ambient particulates. Free Radical biology and medicine 35: 327-340, 2003 Takenaka S, Karg E, Moller W, Roth C, Ziesenis A, Heinzmann U, Schramel P, Heyder J..A morphologic study on the fate of ultrafine silver particles: distribution pattern of phagocytized metallic silver in vitro and in vivo. Inhal Toxicol 12: 291-299, 2000 Takenaka S, Karg E, Roth C, Schulz A, Heinzmann U, Schramei P, Heyder J. Pulmonary and systemic distribution of inhaled ultrafine silver particles in rats. Environ Health Perspect. 109(suppl 4): 547-551, 2001 Taylor DA. Dust in the wind, Environ Health Perspect 110.2002. Tokiwa H, Sera N, Nakanishi Y, Sagai M. 8-Hydroxyguanosine formed in human lung tissues and the association with diesel exhaust particles. Free Radic Biol Med. 27: 1251-1258, 1999 Ulrich MM, Alink GM, Kumarathasan P, Vincent R, Boere AJ, Cassee FR. Health effects and time course of particulate matter on the cardiopulmonary system in rats with lung inflammation. J Toxicol Environ Health A 25;65:1571-1595, 2002 Urch B, Brook JR, Wasserstein D, Brook RD, Rajagopalan S, Corey P, Silverman F. Relative contributions of PM2.5 chemical constituents to acute arterial vasoconstriction in humans. Inhal Toxicol. 16:345-352, 2004. Vincent R, Kumarathasan P, Goegan P, Bjarnason SG, Guenette J, Berube D, Adamson IY, Desjardins S, Burnett RT, Miller FJ, Battistini B. Inhalation toxicology of urban ambient particulate matter: acute cardiovascular effects in rats. Res Rep Health Eff Inst. (104):5-54; discussion 55-62, 2001 Vural P, Cevik A, Curgunlu A, Canbaz M. Effects of diabetes mellitus and acute hypertension on plasm | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39238 | - |
dc.description.abstract | 流行病學研究顯示,微粒空氣污染對心肺疾病的毒性效應是公共衛生上相當重要的議題,然而生物學上的可能性仍不清楚。近年來越來越多探討微粒空氣污染的毒理研究嘗試回答這個問題。研究顯示,微粒空氣污染中的特定成分,如酸鹽、金屬、內毒素,或是微粒本身的特性,如粒徑、表面積、表面活性等都可能與健康效應有關。最近的研究進一步指出,個體本身的易感受性也可能與微粒空氣污染造成的健康效應有關,流病研究發現,老人、小孩及本身患有呼吸道或心血管疾病的人對微粒空氣污染的影響較為敏感,最近的研究更顯示,糖尿病患可能是另一個與微粒空氣污染引發的心血管疾病有關的易感族群,然而詳細的生物機轉仍須進一步驗證。
為了釐清微粒空氣污染造成心肺毒性的生物可能性,提供公共衛生上疾病預防及污染控制的政策依據,我們必須建立毒理學證據及釐清可能的機轉。本研究的目的,嘗試以呼吸毒理學的架構及原理,探討微粒空氣污染的呼吸道與心血管毒性,分別以肺部疾病及心血管疾病動物模式,釐清微粒空氣污染的健康效應。此外,我們亦探討了微粒的粒徑所可能扮演的角色,包括細粒徑微粒(PM2.5)及奈米粒徑微粒(<100nm)。 首先,我們建立微粒空氣濃縮器及動物暴露系統進行呼吸暴露,以Monocrotaline(MCT)-肺高血壓大鼠為肺部疾病動物模式,探討暴露位於交通繁忙台北都會區的環保署超級測站附近濃縮細粒徑微粒(PM2.5)的急性肺部效應,同時應用此套系統,探討暴露於沙塵暴其間濃縮微粒的急性效應。研究結果顯示,肺高血壓大鼠在急性暴露台北都會區濃縮微粒後,會引發顯著的肺部傷害與發炎,發炎前趨細胞激素亦增加。而肺高血壓大鼠在暴露於沙塵暴濃縮微粒6小時,即會產生顯著的肺部發炎,同時周邊血液白血球亦有增加的趨勢,這些急性毒性效應與沙塵暴的濃度呈現劑量反應關係。本研究發現,台北都會區與沙塵暴其間微粒成分並不完全相同,台北都會區有較高比例的酸鹽,而沙塵暴其間微粒則有較高比例的矽及鋁等元素,特定成分與健康效應的關係需要進一步的研究。本研究首次發現,沙塵暴微粒可能在敏感的疾病動物上造成急性的肺部效應,可能與黏附於沙塵暴微粒上的污染物、內毒素,或是沙塵暴微粒中小粒徑微粒數目濃度較高有關。使用微粒濃縮器可以真實反應大氣微粒的組成,但無法釐清微粒粒徑的影響,最近研究指出,大氣微粒中奈米粒徑的微粒可能與健康效應有關,因此我們以人造的聚苯乙烯微粒,粒徑包括64、202及535 nm,探討微粒粒徑對於肺部毒性的角色。我們發現,在氣管灌注同一質量濃度24小時後,64 nm微粒造成的肺部發炎與傷害、細胞激素的增加都較205及535nm的微粒顯著,奈米微粒也會造成較明顯的氧化壓力,包括肺部glutathione (GSH)的下降及血漿中8-OHdG的增加。進一步分析顯示,這些急性效應與所灌注的微粒總表面積有相關。我們認為微粒引發的肺部效應中,除了粒徑效應之外,總表面積亦可能扮演重要角色。 除了肺部毒性之外,微粒有關的心血管毒性也成為重要的議題。然而過去應用於微粒毒性研究的心血管疾病動物模式都存在其限制性。我們發現,糖尿病的部分病理生理變化可能與微粒引發的心血管效應有共同的作用途徑,包括氧化壓力的增加、系統性的發炎反應及血管內皮功能的改變,因此我們首度嘗試以strepotozotocin誘發之糖尿病大鼠作為微粒毒性研究的心血管疾病動物模式,探討微粒暴露的影響,並評估此模式應用於微粒心血管毒性研究的可行性。考量應用微粒濃縮器及鼻部暴露腔的侷限空間,可能對心血管參數造成影響,因此我們以氣管灌注的方式,探討於台北都會區超級測站收集的細粒徑微粒(PM2.5)的心血管效應。結果顯示,PM2.5的暴露造成健康及糖尿病大鼠的肺部發炎反應,然而此肺部相關效應並不會因為糖尿病的有無而有所不同。有趣的是,我們發現暴露於PM2.5的糖尿病大鼠血中氧化壓力標記8-OHdG增加了15.6%,而健康大鼠只增加4.0%;更值得注意的是,糖尿病大鼠在暴露後PM2.5,血中內皮素(ET-1)增加了40.3%,而健康大鼠僅增加了2.6%。經進一步統計分析,我們發現微粒暴露與糖尿病對於8-OHdG (p<0.01)及ET-1(p=0.08)的增加有交互作用。進一步探討奈米粒徑的暴露對糖尿病大鼠的心血管效應,發現暴露於奈米碳黑(14nm)導致顯著的肺部發炎及傷害反應,奈米碳黑在糖尿病大鼠造成顯著的周邊發炎反應增加,血管內皮素升高及血液一氧化氮降低,奈米微粒暴露可能在糖尿病的病理生理作用途徑造成心血管疾病風險的增加。 本研究結果,證實了微粒空氣污染中的細粒徑微粒(PM2.5)在疾病動物模式可造成心肺毒性效應,同時我們發現奈米微粒在微粒引發的呼吸及心血管毒性可能扮演重要的角色。本研究提供過去流行病學觀察的支持,並認為可進一步應用糖尿病大鼠於微粒相關心血管疾病的研究,對於生物機制可提供有用的資訊,並提供未來研究的新方向。 | zh_TW |
dc.description.abstract | An increasing amount of epidemiological evidences suggest that the effect of particulate air pollution on the cardiopulmonary system is a significant public health concern. However, the biological plausibility remains unclear. Recently, the cardiopulmonary toxicities of particulate matter (PM) are under active investigation. Studies suggest that specific components of PM are responsible for the related toxicity, such as acidity salts, metals and endotoxin. The characteristics of PM may also be associated with adverse effects, such as particle size, surface area and the surface activity. Recent studies further indicate that the susceptibility of subjects exposed to PM is associated with PM-induced health effects. Epidemiologic studies report that the elderly, children and subjects with pre-existing respiratory and cardiovascular disease are more susceptible to PM. Recent investigations further indicate that diabetics may be another susceptible population in PM-related cardiovascular events. However, the exact biological mechanisms still need to be clarified.
In order to investigate the biological plausibility of PM-induced toxicity, and to provide evidence in public health and pollution control, it is necessary to establish the link between PM exposure and toxicological evidence. The aim of this study is to apply the principles of inhalation toxicology in investigating PM-induced pulmonary and cardiovascular toxicity. We used pulmonary and cardiovascular diseased animal models to examine the acute effects after exposed to fine particles (PM2.5) and ultrafine particles (<100nm). At fist, we set up ambient particle concentrator and animal inhalation exposure system. Using monocrotaline (MCT)-induced pulmonary hypertensive rats as pulmonary diseased animals, we investigated the acute effects after exposed to PM in a traffic busy area near EPA supersite in Taipei city and to PM during Asian dust events. Our results revealed, significant pulmonary inflammation and injury, and increase in proinflammatory cytokine were observed in MCT-pulmonary hypertensive rats exposed to PM in traffic busy area. We also found a significantly increased pulmonary inflammation and WBC in peripheral blood in MCT-pulmonary hypertensive rats exposed to PM during Asian dust events for only 6 hours. There was a dose-response relationship between this observation and the concentration of Asian dust events. We found the components of PM in traffic busy area and PM during dust storm were not identical. PM in traffic busy area contained higher proportion of sulfate, however, PM during dust storm consisted largely of silica and aluminum. It is not clear whether these different components were responsible for the pulmonary toxicity. This was the first report that PM during dust storm caused pulmonary toxicity on diseased animals. We suggested these effects might be associated with the absorbed pollutants and endotoxin on PM, or be associated with the higher number concentration of smaller particles. Using state of art ambient particle concentrator can reflex the nature of ambient particles, however it has the limitation in differentiating specific particle size. Recent studies indicate that ultrafine fraction of ambient PM may be responsible for the adverse health effects. We used artificial polystyrene particles, including 64, 202 and 535nm, to examine the effect of particle size on pulmonary toxicity. We found after intratracheally instilled with same mass concentration, ultrafine particle (64nm) resulted more significant pulmonary inflammation and injury as compared to larger particles (202 and 535nm) in MCT-pulmonary hypertensive rats. Moreover, exposed to ultrafine particles caused significant oxidative stress, including depletion of glutathione (GSH) in lung tissue, and increase in plasma 8-OHdG. Further analysis revealed that these effects were associated with instilled total particle surface area. We suggested that not only particle size, but the surface area of PM might play important role on PM-induced pulmonary toxicity. In addition to pulmonary toxicity, PM-induced cardiovascular toxicity becomes concerning issue. However, cardiovascular diseased animals in previous studies have some limitation. We found pathophysiology of diabetes might share the common pathway with PM-induced cardiovascular events, including excess generation of oxidative stress, systemic inflammation and vascular endothelial dysfunction. Therefore, we firstly used strepotozotocin (STZ)-diabetic rat as cardiovascular diseased animal model in PM-related study. To avoid possible confounding factors in the confined space of nose-only exposure chamber, we used the method of intratracheal instillation to investigate the cardiovascular toxicity after treatment with PM2.5 collected in a traffic busy area near Taipei EPA supersite. The results revealed that exposure to caused pulmonary toxicity in both diabetic and healthy rats, and the extent of these effects didn’t be modified by the status of diabetes. Interestingly, we found that increases of 8-OHdG and ET-1 were more prominent in diabetic rats. For 8-OHdG generation, diabetic rats exposed to PM demonstrated a 15.6 % increase; however, non-diabetic rats exposed to PM showed only 4.0 % increase. A 40.3 % increase in plasma ET-1 after PM exposure was observed in diabetic rats, while there was only a 2.6 % increase in plasma ET-1 after PM exposure in non-diabetic rats. General linear model was further used to test the interaction between diabetes and PM. We found there were interactions on 8-OHdG (Table 3.1.4, p<0.01) and ET-1 (p=0.08). We further investigated the effects of ultrafine PM on diabetic rats. We found ultrafine carbon black (14nm) caused significant pulmonary inflammation. Exposed to ultrafine carbon black further resulted in significant increase of systemic inflammation, increase of ET-1 and decrease of NO in diabetic rats. Our results demonstrated that biological plausibility that fine particles (PM2.5) would cause cardiopulmonary toxicity in compromised diseased animals. We also found ultrafine particles might play important role on PM-induced cardiopulmonary effects. This study provided toxicological supports for previous epidemiologic observations. We further believed that STZ-diabetic rat could be further applied in the mechanistic studies of PM-induced cardiovascular events. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T17:24:41Z (GMT). No. of bitstreams: 1 ntu-94-D91841003-1.pdf: 12712313 bytes, checksum: 90767aac8fa88ea2ec170ce7d08df5dc (MD5) Previous issue date: 2005 | en |
dc.description.tableofcontents | TABLE OF CONTENTS i
ACKNOWLEDGEMENT iii CHINESE ABSTRACT iv ABSTRACT vii 1. INTRODUCTION 1 1.1 Overall research objectives 1 1.2 Backgrounds 4 1.2.1 Epidemiology of Particulate Matter Health Effects 4 1.2.2 Pulmonary toxicity of particulate matter 5 1.2.3 Cardiovascular effects of particulate matter 9 1.2.4 Potential role of specific components of particulate matter 11 1.2.5 Diseased animals in particulate matter toxicity studies 13 1.3 Overall experimental approaches 20 2. PULMONARY TOXICITY OF AMBIENT PARTICULATE MATTERS 22 2.1 Pulmonary effects of fine particles in MCT-pulmonary hypertensive rats 22 2.1.1 Abstract 22 2.1.2 Introduction 23 2.1.3 Materials and methods 26 2.1.4 Results 29 2.1.5 Discussion 31 2.1.6 Tables and figures 34 2.2 Pulmonary effects of ultrafine particles in MCT-pulmoanry hypertensive rats 40 2.2.1 Abstract 40 2.2.2 Introduction 41 2.2.3 Materials and methods 43 2.2.4 Results 45 2.2.5 Discussion 47 2.2.6 Tables and figures 49 3. CARDIOVASCULAR TOXICITY OF AMBIENT PARTICULATE MATTERS 54 3.1 Cardiovascular effect of fine particles in STZ-diabetic rats 54 3.1.1 Abstract 54 3.1.2 Introduction 55 3.1.3 Material and methods 56 3.1.4 Results 61 3.1.5 Discussion 62 3.1.6 Tables and figures 68 3.2 Cardiovascular effect of ultrafine particles in STZ-diabetic rats 70 3.2.1 Abstract 70 3.2.2 Introduction 70 3.2.3 Materials and methods 73 3.2.4 Results 76 3.2.6 Tables and figures 79 4. DISCUSSION AND CONCLUSION 83 5. REFERENCES 89 Appendix 1 Effects of dust storm particles on inflammation markets in pulmonary hypertensive rats. Environ Res. 2004; 95: 71-76 Appendix 2 Effects of concentrated ambient particles on airway responsiveness and pulmonary inflammation in pulmonary hypertensive rats. Inhal Toxicol. 2004; 16: 785-792 Appendix 3 Enhanced oxidative stress and endothelial dysfunction in streptozotocin-diabetic rats exposed to fine particles. Environ Res (in revision) Appendix 4 Association of particle surface area with oxidative stress, lung inflammation and oxidative DNA damage in pulmonary hypertensive rats. Toxicology Letters (submitted) Appendix 5 DNA single strand breaks in peripheral lymphocytes associated with urinary thiodiglycolic acid levels in polyvinyl chloride workers. Mutat Res. 2004; 561: 119-126. Appendix 6 Effects on sister chromatid exchange frequency of polymorphisms in DNA repair gene XRCC1 in smokers. Mutat Res. 2002; 519: 93-101 | |
dc.language.iso | en | |
dc.title | 空氣懸浮微粒心肺毒性研究 | zh_TW |
dc.title | CARDIOPULMONARY TOXICITY STUDY OF AMBIENT PARTICULATE MATTERS | en |
dc.type | Thesis | |
dc.date.schoolyear | 93-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 詹長權,林幸榮,李輝,林嘉明 | |
dc.subject.keyword | 空氣懸浮微粒,心肺毒性, | zh_TW |
dc.subject.keyword | cardiopulmonary toxicity,ambient particulate matters, | en |
dc.relation.page | 185 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2005-01-26 | |
dc.contributor.author-college | 公共衛生學院 | zh_TW |
dc.contributor.author-dept | 職業醫學與工業衛生研究所 | zh_TW |
顯示於系所單位: | 職業醫學與工業衛生研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-94-1.pdf 目前未授權公開取用 | 12.41 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。