請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39216
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 鄭登貴 | |
dc.contributor.author | Yu-Jung Yeh | en |
dc.contributor.author | 葉諭容 | zh_TW |
dc.date.accessioned | 2021-06-13T17:24:26Z | - |
dc.date.available | 2007-02-02 | |
dc.date.copyright | 2005-02-02 | |
dc.date.issued | 2005 | |
dc.date.submitted | 2005-01-26 | |
dc.identifier.citation | Adashi, E. Y. (1992). Intraovarian peptides. Stimulators and inhibitors of follicular growth and differentiation. Endocrinol Metab Clin North Am 21, 1-17.
Aoki, F., Worrad, D. M., and Schultz, R. M. (1997). Regulation of transcriptional activity during the first and second cell cycles in the preimplantation mouse embryo. Dev Biol 181, 296-307. Arceci, R. J., Pampfer, S., and Pollard, J. W. (1992). Expression of CSF-1/c-fms and SF/c-kit mRNA during preimplantation mouse development. Dev Biol 151, 1-8. Carabatsos, M. J., Elvin, J., Matzuk, M. M., and Albertini, D. F. (1998). Characterization of oocyte and follicle development in growth differentiation factor-9-deficient mice. Dev Biol 204, 373-84. Chambers, I., Colby, D., Robertson, M., Nichols, J., Lee, S., Tweedie, S., and Smith, A. (2003). Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113, 643-55. Chapman, D. L., Garvey, N., Hancock, S., Alexiou, M., Agulnik, S. I., Gibson-Brown, J. J., Cebra-Thomas, J., Bollag, R. J., Silver, L. M., and Papaioannou, V. E. (1996). Expression of the T-box family genes, Tbx1-Tbx5, during early mouse development. Dev Dyn 206, 379-90. Chung, S., Andersson, T., Sonntag, K. C., Bjorklund, L., Isacson, O., and Kim, K. S. (2002). Analysis of different promoter systems for efficient transgene expression in mouse embryonic stem cell lines. Stem Cells 20, 139-45. Dong, J., Albertini, D. F., Nishimori, K., Kumar, T. R., Lu, N., and Matzuk, M. M. (1996). Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature 383, 531-5. Driancourt, M. A., Reynaud, K., Cortvrindt, R., and Smitz, J. (2000). Roles of KIT and KIT LIGAND in ovarian function. Rev Reprod 5, 143-52. Dube, J. L., Wang, P., Elvin, J., Lyons, K. M., Celeste, A. J., and Matzuk, M. M. (1998). The bone morphogenetic protein 15 gene is X-linked and expressed in oocytes. Mol Endocrinol 12, 1809-17. Duboule, D., and Morata, G. (1994). Colinearity and functional hierarchy among genes of the homeotic complexes. Trends Genet 10, 358-64. Edwards, R. G. (2003). Aspects of the molecular regulation of early mammalian development. Reprod Biomed Online 6, 97-113. Elbashir, S. M., Martinez, J., Patkaniowska, A., Lendeckel, W., and Tuschl, T. (2001). Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. Embo J 20, 6877-88. Elvin, J. A., and Matzuk, M. M. (1998). Mouse models of ovarian failure. Rev Reprod 3, 183-95. Elvin, J. A., Yan, C., Wang, P., Nishimori, K., and Matzuk, M. M. (1999). Molecular characterization of the follicle defects in the growth differentiation factor 9-deficient ovary. Mol Endocrinol 13, 1018-34. Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., and Mello, C. C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806-11. Gehring, W. J. (1987). Homeo boxes in the study of development. Science 236, 1245-52. Gehring, W. J., Qian, Y. Q., Billeter, M., Furukubo-Tokunaga, K., Schier, A. F., Resendez-Perez, D., Affolter, M., Otting, G., and Wuthrich, K. (1994). Homeodomain-DNA recognition. Cell 78, 211-23. Guo, Q., Kumar, T. R., Woodruff, T., Hadsell, L. A., DeMayo, F. J., and Matzuk, M. M. (1998). Overexpression of mouse follistatin causes reproductive defects in transgenic mice. Mol Endocrinol 12, 96-106. Hamatani, T., Carter, M. G., Sharov, A. A., and Ko, M. S. (2004). Dynamics of global gene expression changes during mouse preimplantation development. Dev Cell 6, 117-31. Heikinheimo, M., Ermolaeva, M., Bielinska, M., Rahman, N. A., Narita, N., Huhtaniemi, I. T., Tapanainen, J. S., and Wilson, D. B. (1997). Expression and hormonal regulation of transcription factors GATA-4 and GATA-6 in the mouse ovary. Endocrinology 138, 3505-14. Hirshfield, A. N. (1991). Development of follicles in the mammalian ovary. Int Rev Cytol 124, 43-101. Hogen, B., F. Costantini, E. Lacy, and R. Beddington. (1994). Manipulating the Mouse Embryo:a laboratory manual, Second edition. Hwang, S., Benjamin, L. E., Oh, B., Rothstein, J. L., Ackerman, S. L., Beddington, R. S., Solter, D., and Knowles, B. B. (1996). Genetic mapping and embryonic expression of a novel, maternally transcribed gene Mem3. Mamm Genome 7, 586-90. Hwang, S. Y., Oh, B., Knowles, B. B., Solter, D., and Lee, J. S. (2001). Expression of genes involved in mammalian meiosis during the transition from egg to embryo. Mol Reprod Dev 59, 144-58. Jaenisch, R. (1997). DNA methylation and imprinting: why bother? Trends Genet 13, 323-9. Joyce, I. M., Pendola, F. L., Wigglesworth, K., and Eppig, J. J. (1999). Oocyte regulation of kit ligand expression in mouse ovarian follicles. Dev Biol 214, 342-53. Kaneko, K. J., Cullinan, E. B., Latham, K. E., and DePamphilis, M. L. (1997). Transcription factor mTEAD-2 is selectively expressed at the beginning of zygotic gene expression in the mouse. Development 124, 1963-73. Kanka, J. (2003). Gene expression and chromatin structure in the pre-implantation embryo. Theriogenology 59, 3-19. Keri, R. A., Lozada, K. L., Abdul-Karim, F. W., Nadeau, J. H., and Nilson, J. H. (2000). Luteinizing hormone induction of ovarian tumors: oligogenic differences between mouse strains dictates tumor disposition. Proc Natl Acad Sci U S A 97, 383-7. Knowles, B. B., Evsikov, A. V., de Vries, W. N., Peaston, A. E., and Solter, D. (2003). Molecular control of the oocyte to embryo transition. Philos Trans R Soc Lond B Biol Sci 358, 1381-7. Ko, M. S. (2001). Embryogenomics: developmental biology meets genomics. Trends Biotechnol 19, 511-8. Ko, M. S., Kitchen, J. R., Wang, X., Threat, T. A., Wang, X., Hasegawa, A., Sun, T., Grahovac, M. J., Kargul, G. J., Lim, M. K., Cui, Y., Sano, Y., Tanaka, T., Liang, Y., Mason, S., Paonessa, P. D., Sauls, A. D., DePalma, G. E., Sharara, R., Rowe, L. B., Eppig, J., Morrell, C., and Doi, H. (2000). Large-scale cDNA analysis reveals phased gene expression patterns during preimplantation mouse development. Development 127, 1737-49. Kunath, T., Gish, G., Lickert, H., Jones, N., Pawson, T., and Rossant, J. (2003). Transgenic RNA interference in ES cell-derived embryos recapitulates a genetic null phenotype. Nat Biotechnol 21, 559-61. Kuo, C. T., Morrisey, E. E., Anandappa, R., Sigrist, K., Lu, M. M., Parmacek, M. S., Soudais, C., and Leiden, J. M. (1997). GATA4 transcription factor is required for ventral morphogenesis and heart tube formation. Genes Dev 11, 1048-60. Laitinen, M. P., Anttonen, M., Ketola, I., Wilson, D. B., Ritvos, O., Butzow, R., and Heikinheimo, M. (2000). Transcription factors GATA-4 and GATA-6 and a GATA family cofactor, FOG-2, are expressed in human ovary and sex cord-derived ovarian tumors. J Clin Endocrinol Metab 85, 3476-83. Latham, K. E., Garrels, J. I., Chang, C., and Solter, D. (1991). Quantitative analysis of protein synthesis in mouse embryos. I. Extensive reprogramming at the one- and two-cell stages. Development 112, 921-32. Latham, K. E., Garrels, J. I., and Solter, D. (1994). Alterations in protein synthesis following transplantation of mouse 8-cell stage nuclei to enucleated 1-cell embryos. Dev Biol 163, 341-50. LaVoie, H. A. (2003). The role of GATA in mammalian reproduction. Exp Biol Med (Maywood) 228, 1282-90. Lewis, E. B. (1978). A gene complex controlling segmentation in Drosophila. Nature 276, 565-70. Lincoln, A. J., Wickramasinghe, D., Stein, P., Schultz, R. M., Palko, M. E., De Miguel, M. P., Tessarollo, L., and Donovan, P. J. (2002). Cdc25b phosphatase is required for resumption of meiosis during oocyte maturation. Nat Genet 30, 446-9. Matzuk, M. M. (2000). Revelations of ovarian follicle biology from gene knockout mice. Mol Cell Endocrinol 163, 61-6. McGrath, S. A., Esquela, A. F., and Lee, S. J. (1995). Oocyte-specific expression of growth/differentiation factor-9. Mol Endocrinol 9, 131-6. Mitsui, K., Tokuzawa, Y., Itoh, H., Segawa, K., Murakami, M., Takahashi, K., Maruyama, M., Maeda, M., and Yamanaka, S. (2003). The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113, 631-42. Molkentin, J. D. (2000). The zinc finger-containing transcription factors GATA-4, -5, and -6. Ubiquitously expressed regulators of tissue-specific gene expression. J Biol Chem 275, 38949-52. Nichols, J., Zevnik, B., Anastassiadis, K., Niwa, H., Klewe-Nebenius, D., Chambers, I., Scholer, H., and Smith, A. (1998). Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95, 379-91. Nieto, M. A., Bennett, M. F., Sargent, M. G., and Wilkinson, D. G. (1992). Cloning and developmental expression of Sna, a murine homologue of the Drosophila snail gene. Development 116, 227-37. Niwa, H., Miyazaki, J., and Smith, A. G. (2000). Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet 24, 372-6. Nothias, J. Y., Majumder, S., Kaneko, K. J., and DePamphilis, M. L. (1995). Regulation of gene expression at the beginning of mammalian development. J Biol Chem 270, 22077-80. Oh, B., Hwang, S. Y., Solter, D., and Knowles, B. B. (1997). Spindlin, a major maternal transcript expressed in the mouse during the transition from oocyte to embryo. Development 124, 493-503. Otting, G., Qian, Y. Q., Billeter, M., Muller, M., Affolter, M., Gehring, W. J., and Wuthrich, K. (1990). Protein--DNA contacts in the structure of a homeodomain--DNA complex determined by nuclear magnetic resonance spectroscopy in solution. Embo J 9, 3085-92. Ovitt, C. E., and Scholer, H. R. (1998). The molecular biology of Oct-4 in the early mouse embryo. Mol Hum Reprod 4, 1021-31. Palmieri, S. L., Peter, W., Hess, H., and Scholer, H. R. (1994). Oct-4 transcription factor is differentially expressed in the mouse embryo during establishment of the first two extraembryonic cell lineages involved in implantation. Dev Biol 166, 259-67. Pauken, C. M., and Capco, D. G. (2000). The expression and stage-specific localization of protein kinase C isotypes during mouse preimplantation development. Dev Biol 223, 411-21. Pesce, M., Wang, X., Wolgemuth, D. J., and Scholer, H. (1998). Differential expression of the Oct-4 transcription factor during mouse germ cell differentiation. Mech Dev 71, 89-98. Picton, H., Briggs, D., and Gosden, R. (1998). The molecular basis of oocyte growth and development. Mol Cell Endocrinol 145, 27-37. Rajkovic, A., Lee, J. H., Yan, C., and Matzuk, M. M. (2002). The ret finger protein-like 4 gene, Rfpl4, encodes a putative E3 ubiquitin-protein ligase expressed in adult germ cells. Mech Dev 112, 173-7. Rajkovic, A., and Matzuk, M. M. (2002). Functional analysis of oocyte-expressed genes using transgenic models. Mol Cell Endocrinol 187, 5-9. Rajkovic, A., Pangas, S. A., Ballow, D., Suzumori, N., and Matzuk, M. M. (2004). NOBOX deficiency disrupts early folliculogenesis and oocyte-specific gene expression. Science 305, 1157-9. Rajkovic, A., Yan, C., Yan, W., Klysik, M., and Matzuk, M. M. (2002). Obox, a family of homeobox genes preferentially expressed in germ cells. Genomics 79, 711-7. Rajkovic, A., Yan, M. S. C., Klysik, M., and Matzuk, M. (2001). Discovery of germ cell-specific transcripts by expressed sequence tag database analysis. Fertil Steril 76, 550-4. Richards, J. S. (1994). Hormonal control of gene expression in the ovary. Endocr Rev 15, 725-51. Sagata, N. (1997). What does Mos do in oocytes and somatic cells? Bioessays 19, 13-21. Scholer, H. R., Dressler, G. R., Balling, R., Rohdewohld, H., and Gruss, P. (1990). Oct-4: a germline-specific transcription factor mapping to the mouse t-complex. Embo J 9, 2185-95. Schultz, R. M. (1993). Regulation of zygotic gene activation in the mouse. Bioessays 15, 531-8. Schultz, R. M. (2002). The molecular foundations of the maternal to zygotic transition in the preimplantation embryo. Hum Reprod Update 8, 323-31. Shi, Y. P., Mohapatra, G., Miller, J., Hanahan, D., Lander, E., Gold, P., Pinkel, D., and Gray, J. (1997). FISH probes for mouse chromosome identification. Genomics 45, 42-7. Shim, C., Choi, D., Kwon, H. B., and Kim, K. (1997). Expression of laminin chain-specific gene transcripts in mouse uterine tissues during peri-implantation period. Mol Reprod Dev 48, 176-84. Stein, P., Svoboda, P., and Schultz, R. M. (2003). Transgenic RNAi in mouse oocytes: a simple and fast approach to study gene function. Dev Biol 256, 187-93. Suzumori, N., Yan, C., Matzuk, M. M., and Rajkovic, A. (2002). Nobox is a homeobox-encoding gene preferentially expressed in primordial and growing oocytes. Mech Dev 111, 137-41. Svoboda, P., Stein, P., Hayashi, H., and Schultz, R. M. (2000). Selective reduction of dormant maternal mRNAs in mouse oocytes by RNA interference. Development 127, 4147-56. Takasaki, N., McIsaac, R., and Dean, J. (2000). Gpbox (Psx2), a homeobox gene preferentially expressed in female germ cells at the onset of sexual dimorphism in mice. Dev Biol 223, 181-93. Thompson, E. M., Legouy, E., and Renard, J. P. (1998). Mouse embryos do not wait for the MBT: chromatin and RNA polymerase remodeling in genome activation at the onset of development. Dev Genet 22, 31-42. Tong, Z. B., Gold, L., De Pol, A., Vanevski, K., Dorward, H., Sena, P., Palumbo, C., Bondy, C. A., and Nelson, L. M. (2004). Developmental expression and subcellular localization of mouse MATER, an oocyte-specific protein essential for early development. Endocrinology 145, 1427-34. Tong, Z. B., Gold, L., Pfeifer, K. E., Dorward, H., Lee, E., Bondy, C. A., Dean, J., and Nelson, L. M. (2000). Mater, a maternal effect gene required for early embryonic development in mice. Nat Genet 26, 267-8. Vollmer, J. Y., and Clerc, R. G. (1998). Homeobox genes in the developing mouse brain. J Neurochem 71, 1-19. Wassarman, P. M., and Kinloch, R. A. (1992). Gene expression during oogenesis in mice. Mutat Res 296, 3-15. Wianny, F., and Zernicka-Goetz, M. (2000). Specific interference with gene function by double-stranded RNA in early mouse development. Nat Cell Biol 2, 70-5. Wiekowski, M., Miranda, M., Nothias, J. Y., and DePamphilis, M. L. (1997). Changes in histone synthesis and modification at the beginning of mouse development correlate with the establishment of chromatin mediated repression of transcription. J Cell Sci 110 (Pt 10), 1147-58. Wu, X., Viveiros, M. M., Eppig, J. J., Bai, Y., Fitzpatrick, S. L., and Matzuk, M. M. (2003). Zygote arrest 1 (Zar1) is a novel maternal-effect gene critical for the oocyte-to-embryo transition. Nat Genet 33, 187-91. Yan, C., and Matzuk, M. M. (2001). Transgenic models of ovarian failure. J Soc Gynecol Investig 8, S30-3. Yeom, Y. I., Fuhrmann, G., Ovitt, C. E., Brehm, A., Ohbo, K., Gross, M., Hubner, K., and Scholer, H. R. (1996). Germline regulatory element of Oct-4 specific for the totipotent cycle of embryonal cells. Development 122, 881-94. Zamore, P. D., Tuschl, T., Sharp, P. A., and Bartel, D. P. (2000). RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101, 25-33. Zeng, F., and Schultz, R. M. (2003). Gene expression in mouse oocytes and preimplantation embryos: use of suppression subtractive hybridization to identify oocyte- and embryo-specific genes. Biol Reprod 68, 31-9. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39216 | - |
dc.description.abstract | 生命開始於精子與卵的受精作用所產生的受精卵。以小鼠為例,卵巢中進行生長的卵母細胞會產生並儲存許多母源性之調節因子,提供作為卵母細胞減數分裂的完成、受精作用、以及小鼠胚發育至八細胞期之所需。小鼠胚發育至二細胞期被視為母源性基因轉換成胚源性基因之過渡時期。此等發育過程係由諸多轉錄因子共同協力調控之結果。目前已經有一些調節因子被確認,並針對其結構上特異性的單元加以分析,例如:同源箱蛋白質。Ohx基因 (卵母細胞特異性表現之同源箱基因) 即是利用電腦選殖的方式篩選獲得者,其僅在小鼠早期胚胎發育時期表現。在RT-PCR之試驗結果中證實,Ohx基因僅在小鼠早期胚胎發育之一至二細胞期可偵測到其表現情形;此外,在成熟小鼠的卵巢中亦可以偵測到其表現。有鑑於濾泡生成過程中,其成熟、排卵與黃體化等作用均是受到荷爾蒙的刺激所致,本試驗中針對尚未性成熟之母小鼠進行超級排卵處理,亦即施以PMSG與hCG腹腔注射。試驗結果發現,四週齡小鼠卵巢中,僅可偵測到微弱的Ohx訊號;但在注射hCG後9小時所取得之小鼠卵巢中,則可在卵巢濾泡中偵測到明顯的Ohx訊號。由上述結果可知Ohx在成熟卵巢中的卵母細胞有顯著的表現,而且其表現可能受到LH潮湧的調控。
爲謀了解Ohx基因的生物性功能,進一步藉由基因標定之方式產製Ohx突變小鼠。試驗結果顯示Ohx+/–小鼠與正常小鼠之間並無差異。然而基因型為Ohx–/–之突變小鼠在出生前即行死亡。此外,試驗中亦收集各個不同發育階段的小鼠胚進行基因型分析,俾確認同型合子突變小鼠之死亡時間。初步之資料顯示,此等突變小鼠胚可能在發育至囊胚時期前即已死亡。 在本論文中,利用shRNA之構築產製H1-Ohxi基因轉殖小鼠,試驗中所獲得之親代小鼠外觀是正常的,唯五隻基因轉殖小鼠中,其中兩隻母小鼠屆六月齡時即無法在重複配種後懷孕。將此等母小鼠於八月齡時犧牲,則可觀察到其卵巢大部分均被黃體細胞佔據。此外,試驗中亦產製Ohx過量表現之基因轉殖小鼠。由此產製之四隻基因轉殖親代公小鼠均可受孕、並能夠將外源基因遺傳至所產生的子代F1中。若令攜帶外源基因之F1子代互交,其所產生之F2子代中,可以發現母小鼠的卵巢中具有許多有腔濾泡。而RT-PCR的分析結果亦顯示在有腔濾泡特異性表現的基因P450 aromatase (cyp19) 也有明顯增加的情形。綜上所述,Ohx基因在早期胚胎發育與卵母細胞生成之過程中扮演很重要的角色。 | zh_TW |
dc.description.abstract | Life begins when sperm fertilizes an egg to form a zygote. In the mouse ovaries, growing oocytes produce a group of maternal regulatory molecules sufficient to support completion of meiosis, fertilization, and development to the 8-cell stage. Formation of a 2-cell mouse embryo marks the transition from maternal gene to zygotic gene dependence. Such regulation is achieved by coordinated functional expression of a large repertoire of transcription factors to control these processes. A number of these factors have been characterized, and thereby found to possess specific modular structural motifs, such as homeodomains. Ohx (oocyte-specific homeobox gene) was one of the genes identified by in silico cloning involved in early embryo development. There were evidences showed that Ohx was preferentially expressed in one- and two-cell embryons, as well as in the oocytes of mature ovaries. Since the development of a single follicle is under the control of hormones to stimulate follicular maturation, ovulation and luteogenesis, we treated immature females with PMSG and hCG to study the hormones effects on the expression of Ohx gene. Weak signals of Ohx mRNA were detected in the follicles of the untreated ovaries of 4-week-old mice. The Ohx mRNA was clearly detected in the oocytes 9 h post-hCG. These results indicate that Ohx is predominantly expressed in oocytes of the mature ovary and may be under the regulation of an LH surge.
To determine its biological function, we generated Ohx-null mouse lines by gene targeting approch. There was no remarkable difference between Ohx heterozygous and wild-type mice. However, prenatal lethality was found for Ohx homozygous mutants. In order to detect when the mutants died, the embryos were collected and studied at different embryonic stages. The preliminary data showed that the Ohx-null embryos probably died before blastocyst stage. A shRNA construct was also used to generate transgenic mice. The H1-Ohxi transgenic founders appeared normally, except that two of the five transgenic female did not produce any progeny after repeated mating at the age of 6 month. These two infertile founders were sacrificed at the age of 8 month and many luteal cells were found in their ovaries. To further investigate the roles of Ohx during oogenesis, we generated transgenic mice with Ohx gene over-expressed. Four male transgenic founders were produced, and appeared fertile. The transgene was later proven to be germline transmitted. We found many antrum follicles in the ovaries of the offspring (F2) produced by F1 intercrossed. The results of RT-PCR also demonstrated a remarkable increasing expression of antrum follicle-specific gene, P450 aromatase (Cyp19), in the ovaries of those F2 mice. In conclusion, Ohx plays several significant roles during oogenesis and early embryonic development in mice. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T17:24:26Z (GMT). No. of bitstreams: 1 ntu-94-F86626004-1.pdf: 4038200 bytes, checksum: 7d31bf0ea6301db78f487384e4258c3f (MD5) Previous issue date: 2005 | en |
dc.description.tableofcontents | 目錄 ………………………………………………………………………… II
表次 ………………………………………………………………………… IV 圖次 ………………………………………………………………………… V 附錄圖次 …………………………………………………………………… VIII 中文摘要 ……………………………………………………………….…… IX 壹、 文獻檢討 ………………………………………………………………. 1 一、同源箱基因 ………………………………………………………. 1 二、濾泡生成與卵母細胞生成之過程 ………………………………. 5 三、小鼠早期胚胎發育 ………………………………………………. 10 貳、 Ohx基因之分子選殖 ………………………………………………….. 10 一、前言 ………………………………………………………………. 16 二、材料與方法 ………………………………………………………. 16 三、結果與討論 ………………………………………………………. 18 參、Ohx基因之表現形象 …………………………………………………... 26 一、前言 ………………………………………………………………. 26 二、材料與方法 ………………………………………………………. 26 三、結果與討論 ……………………………………………….……… 33 肆、Ohx基因剔除小鼠的產製與分析 ……………………………….……. 43 一、前言 ……………………………………………………….……… 43 二、材料與方法 ………………………………………………………. 43 三、結果與討論 ………………………………………………………. 47 伍、H1-Ohxi基因轉殖小鼠的產製與分析 ………………………………... 66 一、前言 ………………………………………………………………. 66 二、材料與方法 ………………………………………………………. 67 三、結果與討論 ………………………………………………………. 69 陸、PCAB-Ohx-HA-IRES-hrGFP基因轉殖小鼠的產製與分析 …………. 75 一、前言 ………………………………………………………………. 75 二、材料與方法 ………………………………………………………. 75 三、結果與討論 ………………………………………………………. 77 結論 …………………………………………………………………………. 84 未來研究方向 ………………………………………………………………. 86 參考文獻 ……………………………………………………………………. 88 英文摘要 ……………………………………………………………………. 93 附錄 …………………………………………………………………………. 95 小傳 ………………………………………………………………………….. 100 | |
dc.language.iso | zh-TW | |
dc.title | 小鼠卵母細胞特異性表現同源箱基因Ohx之分子選殖與功能分析 | zh_TW |
dc.title | Molecular cloning and functional characterization of an oocyte specific homeobox gene - Ohx | en |
dc.type | Thesis | |
dc.date.schoolyear | 93-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 林淑華,黃木秋,陳全木,李坤雄,謝秀梅,李鴻 | |
dc.subject.keyword | 同源箱基因,胚,埋植前,卵母細胞, | zh_TW |
dc.subject.keyword | oocyte,preimplantation,embryo,homeobox gene, | en |
dc.relation.page | 100 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2005-01-27 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 畜產學研究所 | zh_TW |
顯示於系所單位: | 動物科學技術學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-94-1.pdf 目前未授權公開取用 | 3.94 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。