請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39181
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 夏復國(Fuh-Kwo Shiah) | |
dc.contributor.author | Hui-Wen Lin | en |
dc.contributor.author | 林慧雯 | zh_TW |
dc.date.accessioned | 2021-06-13T17:06:38Z | - |
dc.date.available | 2005-11-14 | |
dc.date.copyright | 2005-01-31 | |
dc.date.issued | 2004 | |
dc.date.submitted | 2005-01-27 | |
dc.identifier.citation | Bratbak, G. and Thingstad, T. F. (1985) Phytoplankton-bacteria interactions: an apparent paradox? Analysis of a model system with both competition and commensalisms. Mar. Ecol. Prog. Ser., 25:23-30.
Capone, D. G.., Zehr, J. P., Paerl, H. W., Bergman, B. and Carpenter, E. J. (1997) Trichodesmium, a globally significant marine cyanobacterium. Science 276:1221-1229. Carpenter, E. J. (1983) Physiology and ecology of marine planktonic Oscillatoria (Trichodesmium). Mar. Biol. Let. 4:69-85. Chang, J., Chiang, K. P., Gong, G. C. (2000) Seasonal variation and cross-shelf distribution of the nitrogen-fixing cyanobacterium, Trichodesmium, in southern East China Sea. Cont .Shelf. Res. 20(4/5):479-492. Chang, J., Shiah, F. K., Gong, G. C. and Chiang, K. P. (2002) Cross-shelf variations of carbon-to-chlorophyll a ratios in the East China Sea as evidenced by particulate organic carbon and phytoplankton cell volume measurements. Deep-Sea Res. II 50(6-7):1219-1236. Chen-Lee Y. L. (2000) Comparison of primary productivity and phytoplankton size structure in the marginal regions of southern East China Sea. Cont. Shelf. Res. 20(4/5):437-458. Cho, B. C., Azam, F. (1988) Major role of bacteria in biogeochemical fluxes in the ocean's interior. Nature, 332:441-443. Conan, P., Turley, C., Stutt, E., Pujo-Pay, M. and Van Wambeke, F. (1999) Relationship between phytoplankton efficiency and the proportion of bacterial production to primary production in the Mediterranean Sea. Aquat. Microb. Ecol. 17:131-144. DiTullio, G. R., Hutchins, D. A. and Bruland, K. W. (1993) Interaction of iron and major nutrients controls phytoplankton growth and species composition in the tropical North Pacific Ocean. Limnol. Oceanogr. 38(3):495-505. Duce, R. A., Tindale, N. W. (1991) Atmospheric transport of iron and its deposition in the ocean. Limnol. Oceanogr. 36:1715-1726. Ducklow, H. W. (1999) The bacterial content of the ocean euphotic zone. FEMS Microb. Eco. 30:1-10. Ducklow, H. W., Carlson, C. A. (1992) Oceanic bacterial production. In Marshall KC (ed.). Advance in microbial Ecology. New York, Plenum. 113-181. Fuhrman, J. A. (1992) Bacterioplankton roles in cycling of organic matter: the microbial food web. In Falkowski PG, Woodhead AD (eds.). Primary productivity and biogeochemical cycles in the sea. New York, Plenum. 361-383. Fuhrman, J. A. and Azam, F. (1982) Thymidine incorporation as a measurement of heterotrophic bacterioplankton production in marine surface waters: evaluation and field results. Mar. Biol. 66:109-120. Glibert, P. M. and Bronk, D. A. (1994) Release of dissolved organic nitrogen by marine diazotrophic cyanobacteria, Trichodesmium spp. Appl. Environ. Microb. 60:3996-4000. Gnanadesikan, A., Slater, R. D., Gruber, N. and Sarmiento, J. L.(2002)Oceanic vertical exchange and new production: a comparison between models and observations. Deep-Sea Res. II 49(1-3):363-401. Goldman, J. C., Dennett, M. R. (1991) Ammonium regeneration and carbon utilization by marine bacteria grown on mixed substrates. Mar. Biol. 109:369-378. Gong, G. C., Liu, K. K., Pai, S. C. (1995) Prediction of nitrate concentration from two-end member mixing in the southern East China Sea. Cont. Shelf. Res. 15:827-842. Gong, G. C., Shiah, F. K., Liu, K. K., Wen, Y. H., Liang, M. H. (2000) Spatial and temporal variation of chlorophyll a, primary productivity and chemical hydrography in the southern East China Sea. Cont. Shelf. Res. 20(4/5):411-436. Hecky, R. E. and Kilham, P. (1988) Nutrient limitation of phytoplankton in freshwater and marine environments: A review of recent evidence on the effects of enrichment. Limnol. Oceanogr. 33(3):796-822. Hobbie, J. E., Daley, R. J., Jasper, S. (1977) Use of nuclepore filters for counting bacteria by fluorescence microscopy. Appl. Environ. Microbiol. 33(5):1225-1228. Karl, D., Letelier, R., Tupas, L., Dore, J., Christian, J. and Hebel, D. (1997) The role of nitrogen fixation in biogeochemical cycling in the subtropical North Pacific Ocean. Nature 388:533-538. Kirchman, D. L., Ducklow, H. W., McCarthy, J. J. and Garside, C. (1994) Biomass and nitrogen uptake by heterotrophic bacteria during the spring phytoplankton bloom in the North Atlantic ocean. Deep-Sea Res. 41 (5/6):879-895. Lancelot, C. and Billen, G. (1985) Carbon-nitrogen relationships in nutrient metabolism of coastal marine ecosystems In Jannasch HW, LeB Williams PJ (eds.), Advances in Aquatic Microbiology, Harcourt Brace Jovanovich, N.Y., pp. 263-321. Lochte, K., Bjonrsen, P. K., Giesenhagen, H. and Weber, A. (1997) Bacterial standing stock and production and their relationship to phytoplankton in the Southern Ocean. Deep-Sea Res. II 44(1-2):321-340. Marumo, R. and Nagasawa, S. (1976) Seasonal variation of the standing crop of a pelagic blue-green alga, Trichodesmium in the Kuroshio water. Bull. Plank. Soci. Jap. 23:19-25. Myklestad, S. (1974) Production of carbohydrates by marine planktonic diatoms. I. Comparison of nine different species in culture. J. Exp. Mar. Biol. Ecol. 15:261-274. Nishikawa, M., Quan, H. and Morita, M. (2000) Preparation and evaluation of certified reference materials for Asian mineral dust. Global. Environ. Res. 4:103-113. Obernosterer, I. and Herndl, G. J. (1995) Phytoplankton extracellular release and bacterial growth: dependence on inorganic N: P ratio. Mar. Ecol. Prog. Ser. 116:247-257. Orcutt, K. M., Lipschultz, F., Gunderson, K., Arimoto, R., Michaels, A. F., Knap, A. H. and Gallon, J. R. (2001) A seasonal study of the significance of N2 fixation by Trichodesmium spp. at the Bermuda Atlantic Time-series Study (BATS) site. Deep-Sea Res. II 48:1583-1608. O’Neil, J. M. and Roman, M. R. (1994) Ingestion of the cyanobacterium, Trichodesmium spp. by pelagic harpacoid copepods Macrosetella, Miracia and Oculosetella. Hydrobiologia 292/293:235-240. Pakulski, J. D., Coffin, R. B., Kelley, C. A., Holder, S. L., Downer, R., Aas, P., Lyons, M. M. and Jeffery, W. H. (1996) Iron stimulation of Antarctic bacteria. Nature 383:133-134. Parsons, T. R., Maita, Y. and Lalli, C. M. (1984) A manual of chemical and biological methods for seawater analysis, Pergamon, N.Y., pp. 173. Popova, E. E., Ryabchenko, V. A. and Fasham, M. J. R. (2000) Biological pump and vertical mixing in the Southern Ocean: their impact on atmospheric CO2. Global. Biogeochem. Cycles. 14:477-498. Prospero, J. M., Bates, D. E., Fanning, K. A. and Walsh, J. J. (2001) Iron fertilization and the Trichodesmium response on the West Florida shelf. Limnol. Oceanogr. 46(6):1261-1277. Redfield, A. C., Ketchum, B. H. and Richards, F. A. (1963) The influence of organisms on the composition of sea water. In Hill M (ed.), The Sea Interscience, N.Y., 2:26-77. Shiah, F. K. (1999) Diel cycles of heterotrophic bacterioplankton abundance and production in the ocean surface waters. Aquat. Microb. Ecol. 17(3):239-246. Shiah, F. K., Liu, K. K. and Gong, G. C. (2000) The coupling of bacterial production and hydrography in the southern East China Sea: Spatial patterns in spring and fall. Cont. Shelf. Res. 20(4/5):459-478. Shiah, F. K., Gong, G. C., Chen, T. Y. and Chen, C. C. (2000a) Temperature dependence of bacterial specific growth rates on the continental shelf of the East China Sea and its potential application in estimating bacterial production. Aquat. Microb. Ecol. 22 (2):155-162. Shiah, F. K., Chen, T. Y., Gong, G. C., Chen, C. C., Chiang, K. P. and Hung, J. J. (2001) Differential coupling of bacterial and primary production in mesotrophic and oligotrophic systems of the East China Sea. Aquat. Microb. Ecol. 23(3):273-282. Steinberg, D. K., Nelson, N. B. and Carlson, C. A.(2004) Production of chromophoric dissolved organic matter (CDOM) in the open ocean by zooplankton and the colonial cyanobacterium Trichodesmium spp. Mar. Ecol. Prog. Ser. 267:45-56. Watson, A. J., Robinson, C., Robertson, J. E., Williams, P. J. B. and Fasham, M. J. R. (1991) Spatial variability in the drawdown of atmospheric carbon dioxide in the North Atlantic, Spring 1989. Nature 350:50-53. Webb, W. L., Newton, M. and Starr, D. (1974) Carbon dioxide exchange of Alnus rubra: a mathematical model. Oecologia 17:281-291. 陳純慧(2003)束毛藻(Trichodesmium spp.)鐵限制與固氮作用相關基因之選殖和在海洋中的表現。國立海洋大學海洋生物所碩士論文。 溫良碩(2001)控制海洋生產力的樞紐。科學月刊,33:144-151。 黃鈴珺(2002)彭佳嶼海域大氣懸浮微粒中金屬元素的濃度、來源及粒徑分佈研究。國立台灣大學海洋研究所碩士論文。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39181 | - |
dc.description.abstract | 水體中的細菌生產力(BP)與初級生產力(PP)可分別視為水體內二氧化碳來源及沉降的過程,因此探討水域內BP:PP ratio變化的控制機制,在瞭解海洋生物源有機碳的過程(例如:生物幫浦)中極具重要性。本研究於2001年在蘇澳外海黑潮海域進行夏、秋兩季航次調查,分別就所量測到的BP、PP及各物理、化學水文參數,與固氮藍綠藻Trichodesmium contortum的豐度([Tricho#])一併做比較。結果顯示,夏季上層水體(0-30 m)硝酸鹽平均濃度(NO3da;0.08 ± 0.08 mM)明顯較秋季低,但卻觀察到豐富的[Tricho#](128-1,166 trichos L-1)。夏天的PP值(21 ± 7 mgC L-1 d-1)及浮游植物置換率(Pm = PP/phytoplankton biomass ; 0.48 ± 0.19 d-1)至少是秋天的1.5倍以上。BP(夏季: 2.5 ± 0.6 mgC L-1 d-1;秋季: 2.4 ± 0.3 mgC L-1 d-1)並未顯示夏、秋兩季間的差異,而夏季的細菌置換率(Bm = BP/bacterial biomass ; 0.11 ± 0.03 d-1)則明顯高於秋季約57﹪。夏季0-30m[Tricho#]的平均豐度與NO3da 之間的明顯負相關以及高水體透光率指出了NO3的缺乏及較充足的陽光可能引發T. contortum的生長。Pm及Bm與T. contortum豐度呈現正相關性,推測細菌的生長可能藉由固氮藍綠藻產生的NH4+及溶解態有機氮而提高,進而使水體內的再生性NH4+供藻類獲取,導致PP與Pm增加;但BP:PP及Bm:Pm ratio與T. contortum豐度間卻呈現負相關性,猜測高的T. contortum豐度可能潛在地降低了藻類與細菌對NH4+的競爭效應。筆者推論在開放性海洋中,T. contortum的存在可促使BP:PP ratio降低,進而增加有機碳往較高營養階層以及運送至系統外(例:深海)的傳送效率。 | zh_TW |
dc.description.abstract | Bacterial production(BP), primary production(PP)and abundance of N2-fixing cyanobacterium, Trichodesmium contortum([Tricho#])were measured in the North Pacific west-boundary Kuroshio Current in summer and autumn, 2001. The warm(28-29 ℃)upper water column(0-30 m)in summer was low in nitrate(NO3da;0.08 ± 0.08 mM)with T. contortum(192-2,115 trichos L-1)observed at all 5 sampling stations. Averaged NO3 in the upper 30m were higher(0.39 ± 0.27 mM)in autumn but with no T. contortum observed except 1 station with a [Tricho#] of 962 trichos/L in surface waters. PP(21 ± 7 mgC L-1 d-1)and algal turnover rate(Pm;0.48 ± 0.19 d-1)in summer were at least 1.5-folds of those recorded in autumn. BP(summer, 2.5 ± 0.6 mgC L-1 d-1;autumn, 2.4 ± 0.3 mgC L-1 d-1)showed no seasonal difference but with bacterial turnover rate(Bm;0.11 ± 0.03 d-1)57% higher in summer. The negative trend of [Tricho#] v.s. NO3da and higher transmittance in summer indicate that NO3 depletion and better light availability might trigger the development of T. contortum. Bm changed positively with [Tricho#] suggesting that bacterial growth might to enhanced by the supply of “new” inorganic(i.e. NH4+)and/or dissolved organic nitrogen from N2-fixing cyanobacterium. From the negative relationship of BP:PP ratio(7-21%)v.s. [Tricho#], it is deduced that high [Tricho#] might potentially reduce the magnitude of NH4+ competition between algae and bacteria. In open ocean, organic carbon transfer efficiency, either to higher trophic levels or to system exportation, can be greatly enhanced at low BP:PP ratio driven by the prevalence of N2-fixing cyanobacterium. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T17:06:38Z (GMT). No. of bitstreams: 1 ntu-93-R90241216-1.pdf: 576450 bytes, checksum: 686c6c19dbe0b06cb2d6b6f9f618a2eb (MD5) Previous issue date: 2004 | en |
dc.description.tableofcontents | 摘要……………………………………………………………………………………………i
英文摘要………………………………………………………………………………………ii 致謝…………………………………………...………………………………………………iii 表目錄…………………………………………………………………………………………vi 圖目錄………………………………………..………………………………………………vii 第一章、前言…………………………………………………………………………………1 1.1海洋生態系在碳循環中的重要性……………………………………………..……1 1.2海洋中浮游植物與異營性浮游細菌的關係………………………………………1 1.3固氮作用以及束毛藻(Trichodesmium)相關之研究…………………………….…2 1.4沙塵暴對海洋生態系的影響……………………………………..…………………3 第二章、研究方法……………………………………………………………...………………5 2.1 研究區域與採樣…………………………………………………….………………5 2.2 大氣懸浮微粒中微量金屬元素-鐵的沈降通量…………………………...………5 2.3 硝酸鹽………………………………………………………………………………5 2.4 顆粒性有機碳…………………………………………………………….…………5 2.5 葉綠素-a………………………………………………………………..…………6 2.6 初級生產力…………………………………………………………………………6 2.7 固氮藍綠藻的生物量………………………………………………………………8 2.8 異營性細菌參數……………………………………………………………………8 2.8.1細菌生物量…………………………………………………..………………8 2.8.2異營性細菌生產力…………………………………………..………………8 2.8.3細菌置換率…………………………………………………..………………9 2.9 群聚呼吸率………………………………………………………….………………9 2.10 資料分析…………………………………………………………………………9 第三章、結果…………………………………………………………………………………11 3.1 物理水文參數………………………………………………...……………………11 3.2 化學水文參數……………………………………………………………………11 3.2.1硝酸鹽(NO3)濃度……………………………………………..…………………11 3.2.2葉綠素(Chl-a)濃度………………………………………...………………11 3.2.3顆粒態有機碳(POC)濃度…………………………………………………12 3.2.4大氣中鐵的沉降速率………………………………………………………12 3.3生物參數……………………………………………………………………………12 3.3.1 固氮藍綠藻Trichodesmium的生物豐度…………………………………12 3.3.2 初級生產力、生物量及置換率……………………………………….……12 3.3.3細菌生產力、生物量及置換率……………………………………..………13 第四章、討論…………………………………………………………….……………………14 4.1固氮藍綠藻Trichodesmium生物量變化的主要控制因子……………..…………14 4.2固氮作用對浮游植物及細菌速率參數的潛在影響力……………………………15 4.3隨著Trichodesmium數量的改變,碳的輸送效率受到的影響……………………16 第五章、結論……………………………………………….…………………………………18 參考文獻…………………………………………………...…………………………………19 表列………………………………………………………...…………………………………24 圖列………………………………………………………...…………………………………28 表目錄 表一、2001年夏秋兩季蘇澳外海黑潮海域各深度之測量參數……………………………24 表二、2001年夏秋兩季蘇澳外海黑潮海域各參數0-30m積分平均值………….…………25 表三、2001年夏秋兩季所有數據各測量參數之相關矩陣表(correlation matrix table)…26 表四、束毛藻豐度 ([Tricho#])與異營性細菌、浮游植物參數之線性回歸分析………….27 圖目錄 圖一、工業革命後大氣中二氧化碳含量增加情形及未來全球氣溫上升預測圖…………28 圖二、海洋水體中食物網及微生物環示意圖………………………………………….……28 圖三、束毛藻在顯微鏡下的型態…………………………………………………….………29 圖四、Trichodesmium的固氮方式…………………………………………………...………29 圖五、黑潮研究海域採樣測站與等深線圖………………………………………….………30 圖六、2001年夏、秋兩季航次所有測站之溫-鹽分布圖…………………………….………31 圖七、2001年夏、秋兩季航次各測站溫度-深度垂直分布圖………………………….……32 圖八、2001年夏、秋兩季航次各測站鹽度-深度垂直分布圖……………………….………33 圖九、2001年夏、秋兩季航次各測站穿透率-深度垂直分布圖………………………….…34 圖十、固氮藍綠藻 T. contortum 豐度與上層30m平均硝酸鹽濃度的關係圖……………35 圖十一、固氮藍綠藻 T. contortum 豐度與各項參數的關係圖……………………………36 圖十二、台灣東北部彭佳嶼於2001年八月至十二月大氣懸浮微粒中微量金屬元素 -鐵的沉降通量隨時間之變化情形……………………….....………37 圖十三、海洋中Trichodesmium固氮作用在有機碳傳輸效率上的影響力……………...…37 圖十四、2001年夏季及秋季調查之PP:CR ratio 與T. contortum豐度間的對應關係……38 | |
dc.language.iso | zh-TW | |
dc.title | 亞熱帶貧營養鹽海域中束毛藻固氮作用在異營性細菌置換率及有機碳傳輸效率方面之潛在衝擊力 | zh_TW |
dc.title | Potential impacts of N2-fixing Trichodesmium on heterotrophic bacterioplankton turnover rates
and organic carbon transfer efficiency in the subtropical oligotrophic ocean system. | en |
dc.type | Thesis | |
dc.date.schoolyear | 93-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 蔣國平(Kuo-Ping Chiang),陳仲吉(Chung-Chi Chen),高樹基(Shuh-Ji Kao) | |
dc.subject.keyword | 固氮作用,束毛藻,異營性細菌,有機碳傳輸速率, | zh_TW |
dc.subject.keyword | N2-fixing,Trichodesmium,organic carbon transfer efficiency,heterotrophic bacterioplankton, | en |
dc.relation.page | 38 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2005-01-27 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 海洋研究所 | zh_TW |
顯示於系所單位: | 海洋研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-93-1.pdf 目前未授權公開取用 | 562.94 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。