Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3917
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 吳俊傑 | |
dc.contributor.author | Chieh-Jen Cheng | en |
dc.contributor.author | 鄭傑仁 | zh_TW |
dc.date.accessioned | 2021-05-13T08:38:31Z | - |
dc.date.available | 2016-07-04 | |
dc.date.available | 2021-05-13T08:38:31Z | - |
dc.date.copyright | 2016-07-04 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-06-30 | |
dc.identifier.citation | 官欣平,2013 : 颱風雙眼牆形成動力研究——非平衡動力的延伸探討。國立台灣大學大氣科學系,碩士論文,72頁。
連國淵,2009 : 颱風路徑與結構同化研究─系集卡爾曼濾波器。國立台灣大學大氣科學系,碩士論文,87頁。 Abarca, S. F., and M. T. Montgomery, 2013: Essential dynamics of secondary eyewall formation. J. Atmos. Sci., 70, 3216–3230. ——, and ——, 2014: Departures from axisymmetric balance dynamics during secondary eyewall formation. J. Atmos. Sci., 71, 3723–3738. ——, and ——, 2015: Are eyewall replacement cycles governed largely by axisymmetric balance dynamics? J. Atmos. Sci., 72, 82–87. Bell, M. M., M. T. Montgomery, and W.-C. Lee, 2012: An axisymmetric view of concentric eyewall evolution in Hurricane Rita (2005). J. Atmos. Sci., 69, 2414–2432. Bui, H. H., R. K. Smith, M. T. Montgomery, and J. Peng, 2009: Balanced and unbalanced aspects of tropical cyclone intensification. Quart. J. Roy. Meteor. Soc., 135, 1715–1731. Didlake, A. C., and R. A. Houze, 2011: Kinematics of the secondary eyewall observed in Hurricane Rita (2005). J. Atmos. Sci., 68, 1620–1636. Donelan, M. A., B. K. Haus, N. Reul, W. J. Plant, M. Stiassnie, H. C. Graber, O. B. Brown, and E. S. Saltzman, 2004: On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett., 31.L18306. Emanuel KA. 1986. An air-sea interaction theory for tropical cyclones. Part I: Steady state maintenance. J. Atmos. Sci. 43: 585–604. ——, M. Fantini, and A. J. Thorpe, 1987: Baroclinic instability in an environment of small stability to slantwise moist convection. Part I: Two-dimensional models. J. Atmos. Sci., 44, 1559–1573. ——, 1989: The finite-amplitude nature of tropical cyclogenesis. J. Atmos. Sci., 46, 3431-3456. Green, B. W., and F. Zhang, 2013: Impacts of air–sea flux parameterizations on the intensity and structure of tropical cyclones. Mon. Wea. Rev., 141, 2308–2324. Hawkins, H. F., 1983: Hurricane Allen and island obstacles. J. Atmos. Sci., 40, 1360–1361. Hawkins, J. D., and M. Helveston, 2008: Tropical cyclone multiple eyewall characteristics. 28th Conf. on Hurricanes and Tropical Meteorology, Orlando, FL, Amer. Meteor. Soc., 14B.1. Hill, K. A., and G. M. Lackmann, 2009: Influence of environmental humidity on tropical cyclone size. Mon. Wea. Rev., 137, 3294–3315. Houze, R. A., and Coauthors, S. S. Chen, B. F. Smull, W.-C. Lee, and M. M. Bell, 2007: Hurricane intensity and eyewall replacement. Science, 315, 1235–1239. Huang, Y.-H., M. T. Montgomery, and C.-C. Wu, 2012: Concentric eyewall formation in Typhoon Sinlaku (2008). Part II: Axisymmetric dynamical processes. J. Atmos. Soc., 69, 716 662–674. Judt, F., and S. S. Chen, 2010: Convectively generated potential vorticity in rainbands and formation of the secondary eyewall in Huricane Rita of 2005. J. Atmos. Sci., 67, 3581-3599. Kepert, J. D., 2013: How does the boundary layer contribute to eyewall replacement cycles in axisymmetric tropical cyclones? J. Atmos. Sci., 70, 2808–2830. Kepert, J. D. and D. S. Nolan, 2014: Reply to “Comments on ‘How Does the Boundary Layer Contribute to Eyewall Replacement Cycles in Axisymmetric Tropical Cyclones?’”. J. Atmos. Sci., 71, 4692–4704. ——, W. H. Schubert, C.-L. Tsai, and Y.-F. Kuo, 2008: Vortex interactions and barotropic aspects of concentric eyewall formation. Mon. Wea. Rev., 136, 5183–5198. Kossin, J. P., and M. Sitkowski, 2009: An objective model for identifying secondary eyewall formation in hurricanes. Mon. Wea. Rev., 137, 876-892. Kuo, H.-C., L.-Y. Lin, C.-P. Chang, and R. T. Williams, 2004: The formation of concentric vorticity structures in typhoons. J. Atmos. Sci., 61, 2722–2734. ——, W. H. Schubert, C.-L. Tsai, and Y.-F. Kuo, 2008: Vortex interactions and barotropic aspects of concentric eyewall formation. Mon. Wea. Rev., 136, 5183–5198. ——, C.-P. Chang, Y.-T. Yang, and H.-J. Jiang, 2009: Western North Pacific typhoons with concentric eyewalls. Mon. Wea. Rev., 137, 3758–3770. Montgomery, M. T., and R. J. Kallenbach, 1997: A theory for vortex Rossby waves and its application to spiral bands and intensity changes in hurricanes. Quart. J. Roy. Meteor. Soc., 123, 435–465. ——, N. V. Sang, R. K. Smith, and J. Persing, 2009: Do tropical cyclones intensify by WISHE? Quart. J. Roy. Meteor. Soc., 135, 1697–1714. ——, S. F. Abarca, R.K. Smith, C.-C. Wu, and Y.-H. Huang, 2014: Comments on ‘‘How does the boundary layer contribute to eyewall replacement cycles in axisymmetric tropical cyclones?’’ J. Atmos. Sci., 71, 4682–4691. ——, J. Persing, and R. K. Smith, 2015: Putting to rest WISHE-ful misconceptions for tropical cyclone intensification, J. Adv. Model. Earth Syst., 7, 92–109. Moon, Y., and D. S. Nolan, 2010: The dynamic response of the hurricane wind field to spiral rainband heating. J. Atmos. Sci., 67, 1779–1805. ——, ——, and M. Iskandarani, 2010: On the use of two-dimensional incompressible flow to study secondary eyewall formation in tropical cyclones. J. Atmos. Sci., 67, 3765–3773. Nong, S., and K. Emanuel, 2003: A numerical study of the genesis of concentric eyewalls in hurricanes. Quart. J. Roy. Meteor. Soc., 129, 3323–3338. Ortt, D., and S. S. Chen, 2006: Rainbands and secondary eye wall formation as observed in RAINEX. 27th Conf. on Hurricanes and Tropical Meteorology, Monterey, CA, Amer. Meteor. Soc., 12A.5. Powell, M. D., Vickery, P. J., and Reinhold, T. A., 2003: Reduced drag coefficients for high wind speeds in tropical cyclones. Nature, 422, 279-283. Qiu, X., Z.-M. Tan, and Q. Xiao, 2010: The roles of vortex Rossby waves in hurricane secondary eyewall formation. Mon. Wea. Rev., 138, 2092–2109. ——, and ——, 2013: The roles of asymmetric inflow forcing induced by outer rainbands in tropical cyclone secondary eyewall formation, J. Atmos. Sci., 70, 953–974. Riehl, H., 1950: A model for hurricane formation. J. Appl. Phys., 21, 917-925. Rotunno, R., and K. A. Emanuel, 1987: An air-sea interaction theory for tropical cyclones. Part II. J. Atmos. Sci., 44, 542-561. Rozoff, C. M., D. S. Nolan, J. P. Kossin, F. Zhang, and J. Fang, 2012: The roles of an expanding wind field and inertial stability in tropical cyclone secondary eyewall formation. J. Atmos. Sci., 69, 2621–2643. Shapiro, L. J., and H. E. Willoughby, 1982: The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39, 378–394. Smith, R. K., M. T.Montgomery, and N. Van Sang, 2009: Tropical cyclone spin-up revisited. Quart. J. Roy. Meteor. Soc., 135, 1321–1335. Sun, Y. Q., Y. Jiang, B. Tan, and F. Zhang 2013, The governing dynamics of the secondary eyewall formation of Typhoon Sinlaku (2008), J. Atmos. Sci., 70, 3818–3837. Terwey, W. D., and M. T. Montgomery, 2008: Secondary eyewall formation in two idealized, full-physics modeled hurricanes. J. Geophys. Res., 113, D12112. Wang, H., C.-C. Wu, and Y. Wang, 2015: Second eyewall formation in an idealized tropical cyclone simulation – Balanced and unbalanced dybamics. J. Atmos. Sci. (minor revision) Wang, X., Y. Ma, and N. E. Davidson 2013, Secondary eyewall formation and eyewall replacement cycles in a simulated hurricane: Effect of the net radial force in the hurricane boundary layer, J. Atmos. Sci., 70, 1317–1341. Wang, Y., 2009: How do outer spiral rainbands affect tropical cyclone structure and intensity? J. Atmos. Sci., 66, 1250–1273. Wu, C.-C., Y.-H. Huang, and G.-Y. Lien, 2012: Concentric eyewall formation in Typhoon Sinlaku (2008). Part I: Assimilation of T-PARC data based on the ensemble Kalman filter (EnKF). Mon. Wea. Rev., 140, 506–527. ——, and ——, 2015: “Tropical Cyclones: Secondary Eyewall Formation”, Encyclopedia of Atmospheric Sciences. 2nd Edition; Edited by Gerald R. North; Elsevier. 85-90, 6 pp. Willoughby, H. E., 1979: Forced secondary circulations in hurricanes. J. Geophys. Res., 84, 3173–3183. ——, J. A. Clos, and M. G. Shreibah, 1982: Concentric eyewalls, secondary eyewall maxima, and the evolution of the hurricane vortex, J. Atmos. Sci., 39, 395-411. ——, H.-L. Jin, S. J. Lord, and J.M. Piotrowicz, 1984: Hurricane structure and evolution as simulated by an axisymmetric,nonhyd rostatic numerical model. J. Atmos. Sci., 41, 1169–1186. Yano, J.-I., and K. Emanuel, 1991: An improved model of the equatorial troposphere and its coupling with the stratosphere. J. Atmos. Sci., 48, 377–389. Zhang, F., and K. A. Emanuel, 2016: On the role of surface fluxes and WISHE in tropical cyclone intensification. J. Atmos. Sci., 73, 2011-2019. Zhou, X., and B. Wang, 2011: Mechanism of concentric eyewall replacement cycles and associated intensity change. J. Atmos. Sci., 68, 972–988. Zhu, Z., and P. Zhu 2014: The role of outer rainband convection in governing the eyewall replacement cycle in numerical simulations of tropical cyclones, J. Geophys. Res. Atmos., 119, 8049–8072. ——,——, 2015: Sensitivities of eyewall replacement cycle to model physics, vortex structure, and background winds in numerical simulations of tropical cyclones, J. Geophys. Res. Atmos., 120, 590–622. Zhu, P., Z. Zhu, S. Gopalakrishnan, R. Black, F. D. Marks, V. Tallapragada, J. A. Zhang, X. Zhang, and C. Gao, 2015: Impact of subgrid-scale processes on eyewall replacement cycle of tropical cyclones in HWRF system, Geophys. Res. Lett., 42, 10,027–10,036. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3917 | - |
dc.description.abstract | 近年來,雙眼牆颱風以及颱風的眼牆置換過程已經廣泛的被觀測以及數值模擬文獻記載及討論。伴隨眼牆置換而造成颱風強度的變化,對於颱風強度預報十分重要,也是一個關鍵的科學議題。雖然許多文獻提出了可能形成雙眼牆的動力機制,仍無明確定論的提出。另外,在過去研究颱風的歷史當中,WISHE (Wind Induced Surface Heat Exchange, WISHE)機制的提出相當關鍵,也被用以解釋颱風的增強過程。本研究主要在探討WISHE機制對於外眼牆的發展與增強的貢獻。
本研究採用高解析度的模式檢驗WISHE機制於雙眼牆形成的角色。在控制組實驗中,於雙眼牆出現的12小時前,我們分析出因為活躍對流而造成非絕熱加熱的增加,以及切向風的擴張的特徵。前者將造成外眼牆區域加熱效率的提升,而後者將引發邊界層中非平衡動力相關的一連串物理過程,兩者將有利於外眼牆的形成。這些模擬結果與文獻的特徵一致。 為了要檢驗雙眼牆颱風之內、外眼牆區域對於WISHE機制的敏感性,我們在計算表面熱量通量時,使用不同的特定上限值計算。這四個上限值分別為:15、10、5、1m s-1,而且限制WISHE機制區域共有四種設計: OSC(限制半徑大於50公里之區域)、OBC(限制半徑大於80公里之區域)、InC(限制半徑於50公里之區域)、RiR(限制介於半徑55~90公里之區域)。我們的分析指出,WISHE機制會影響SEF的發生與否,以及其眼牆的發展型態。若限制了外眼牆以及其外區域的表面熱量通量,當限制程度較小時,則外眼牆可以發展,而且也具有與雙眼牆相關的物理特徵,但是發展的時間被延後,且強度較弱;當限制程度較大時,則沒有外眼牆發展。另外,透過InC實驗我們證明,在颱風內核區域附近的WISHE機制不會影響外眼牆的發展,但是將造成較早的眼牆置換過程。接著,透過SE模式(Sawyer-Eliassen model)以及切向風收支的分析我們得知,颱風切向風的擴張以及次環流過程將受到限制WISHE機制的影響,也就是會影響颱風的質量場以及動量場的演變。此外,我們也發現,內、外眼牆的相對強度,也會影響颱風外眼牆的發展速度以及成熟的時間。這些過程指出,WISHE機制對於眼牆置換以及外眼牆形成的過程十分重要。 | zh_TW |
dc.description.provenance | Made available in DSpace on 2021-05-13T08:38:31Z (GMT). No. of bitstreams: 1 ntu-105-R03229001-1.pdf: 8823285 bytes, checksum: 6d2f3fc375a90282352b357533e19454 (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 致謝……………………………………………………………………i
摘要……………………………………………………………………ii 英文摘要………………………………………………………………iv 第一章 前言……………………………………………………………1 1.1 颱風外眼牆形成文獻回顧………………………………………2 1.1.1外在條件與模式設定影響…………………………………………2 1.1.2 內在動力因素……………………………………………………4 1.1.3 平衡與非平衡動力在外眼牆形成中的角色……………………5 1.2 WISHE機制回顧………………………………………………………9 1.2.1 WISHE機制…………………………………………………………9 1.3 研究動機與目的……………………………………………………11 第二章 研究工具與方法………………………………………………13 2.1 資料來源……………………………………………………………13 2.2 實驗設計……………………………………………………………13 2.2.1 海表交換係數設定……………………………………………13 2.2.2 控制組實驗(CTL)………………………………………………14 2.2.3 敏感性實驗………………………………………………………14 第三章 研究結果一-控制組實驗……………………………………16 3.1 控制組實驗之結構演變……………………………………………16 3.2 控制組實驗軸對稱結構及物理參數特徵…………………………17 3.2.1 平衡及非平衡動力的角色………………………………………17 3.2.2 Sawyer-Eliassen診斷…………………………………………20 3.2.3 切向動量收支分析………………………………………………21 3.3 小節…………………………………………………………………24 第四章 研究結果二-敏感性實驗……………………………………25 4.1 敏感性實驗之結構演變…………………………………………25 4.2 敏感性實驗軸對稱結構及物理參數特徵………………………28 4.2.1 非平衡與平衡動力的角色………………………………………28 4.2.2 外眼牆區域相當位溫改變量之差異……………………………29 4.2.3 內外眼牆的相對強度與SEF的關係……………………………31 4.2.4 Sawyer-Eliassen診斷…………………………………………32 4.2.5 敏感性實驗之切向動量收支分析………………………………33 4.2.6敏感性實驗之表面熱通量分布與其他物理參數之關聯………34 4.3 綜合討論與小節…………………………………………………36 第五章 總結及未來展望………………………………………………38 5.1 總結…………………………………………………………………38 5.2 未來展望……………………………………………………………40 參考文獻…………………………………………………………………42 附圖…………………………………………………………………………48 附表………………………………………………………………………97 | |
dc.language.iso | zh-TW | |
dc.title | WISHE機制對於颱風雙眼牆形成的角色 | zh_TW |
dc.title | The Role of the WISHE Mechanism in
Secondary Eyewall Formation | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 楊明仁,游政谷,吳健銘 | |
dc.subject.keyword | 颱風、雙眼牆,WISHE機制,眼牆置換,非平衡動力,平衡動力, | zh_TW |
dc.subject.keyword | Typhoon,secondary eyewall formation,wind induced surface heat exchange (WISHE) mechanism,eyewall replacement cycle,unbalanced dynamics,balanced dynamics, | en |
dc.relation.page | 97 | |
dc.identifier.doi | 10.6342/NTU201600600 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2016-06-30 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 大氣科學研究所 | zh_TW |
Appears in Collections: | 大氣科學系 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-105-1.pdf | 8.62 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.