Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39175
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭光宇
dc.contributor.authorChung-Huai Changen
dc.contributor.author張中懷zh_TW
dc.date.accessioned2021-06-13T17:06:15Z-
dc.date.available2005-01-31
dc.date.copyright2005-01-31
dc.date.issued2005
dc.date.submitted2005-01-27
dc.identifier.citation[1] P. Hohenberg and W. Kohn, Phys Rev., 136: 864B (1964.)
[2] W. Kohn and L. J. Sham, Phys. Rev., 140: 1133A (1965).
[3] R. M. Dreizler and E. K. U. Gross, Density Functional Theory, Springer, Berlin (1990& 1991).
[4] C. S. Wang, B. M. Klein, and H. Krankaner, Phys. Rev. Lett. 54, 1852 (1985).
[5] J. H. Cho and M. Scheffler, Phys. Rev. B 53, 10685 (1996).
[6] F. Fulde, Electron Correlations in Molecules and Solids, Springer, Berlin (1991).
[7] D. J. Fiolhais, Phys. Rev. B 46, 6671 (1992).
[8] O. Medelung, Introduction to solid-state Theory, Translated by B. C. Taylor, Springer (1980).
[9] Dario Alfe, February 26, 2001.
[10] C. Kittel, Introduction to Solid State Physics 7th edit, J. Weley, New York (1996).
[11] J. L. Warren, J. L. Yarnell, G. Dolling, and R. A. Cowley, Phys. Rev. 158, 805 (1967)
[12] E. Burkel, Inelastic Scattering of X Rays with very High Energy Resolution, Vol. 125 of Springer Tracts in Modern Physics, Springer, Berlin (1992) (especially pp.61-64).
[13] G. Dolling, in Inelastic Scattering of Neutrons in Solids and Liquids, edited by S. Ekland (IAEA, Vienna, 1963), Vol. II p37; G. Nilsson and G. Nelin, Phys. Rev. B 6, 364 (1972)
[14] A. D. Corso and S. de Gironcoli, Phys. Rev. B 62, 273 (2001); B. N. Brockhouse, H. E. Abou-Helal, and E. D. Hallman, Solid State Commun 5, 211 (1967).
[15] N. Wakabayashi, R. H. Schern, and H. G. Smith, Phys. Rev. B 25, 5122 (1982).
[16] D. Autonangeli, M. Krisch, G. Fiquet, D. L. Farber. C. M. Aracne, J. Badro, F. Occelli, and H. Requardt, Phys. Rev. Lett. 93, 215505 (2004).
[17] A. D. Corso and S. de Gironcoli, Phys. Rev. B 62, 273 (2001); R. J. Birgenean, J. Cordes, G. Dolling, and A. D. B. Woods, Phys. Rev. 136, A1359 (1964).
[18] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
[19] L. Vocadlo, D. Alfe, M. J. Gillan, I. G. Wood, J. P. Brodholt, and G. D. Price, nature 424, 536 (2003)
[20] P. Soderlind, J. A. Moriarty, and J. M. Willis, Phys. Rev. B 53, 14063 (1996).
[21] W. Petry, J. Phys. IV 5, c2-15 (1995); J. Trampenan, et al., Phys. Rev. B 43, 10963 (1991).
[22] W. P. Crummett, H. G. Smith, R. M. Nicklow, and N. Wakabayashi, Phys. Rev. B 19, 6028 (1979).
[23] H. G. Smith, N. Wakabayashi, W. P. Crummett, R. R. Nickiow, G. H. Lander, and E. S. Fisher, Phys. Rev. Lett. 44, 1612 (1980).
[24] C. S. Barett, M. H. Mueller, and R. L. Hittermann, Phys. Rev. 129, 625 (1963).
[25] M. E. Manley, G. H. Lander, H. Sinn, A. Alatas, W. L. Hults, R. J. McQueeney, J. L. Smith, and J. Willit, Phys. Rev. B 67, 052302 (2003).
[26] G. Y. Guo and H. H. Wang, Chinese Journal of Physic Vol. 38 NO.5, 949 (2000).
[27] S. N. Gerd, L. Stixrude and R. E. Cohen, Phys. Rev. B 60, 791 (1999).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39175-
dc.description.abstractWe used force-constant method to study the lattice dynamics of uranium. We performed the uranium phonon dispersion relations with scalar relativistic, on-site coulomb interaction, and spin-orbital coupling calculations. The force-constant method has given very good results for materials with strong covalent bonding (such as diamond) and cubic structures. We predict the structural phase transition of iron in high pressure from imaginary frequencies of phonon dispersions. For uranium, we get better results in [110] and [001] direction in phonon dispersions calculation with on-site coulomb interaction.
In our calculations, we used the Vienna ab-initio simulation package (VASP) based on density-functional theory (DFT) with generalized gradient approximation (GGA) plus projector-augmented wave (PAW) method.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T17:06:15Z (GMT). No. of bitstreams: 1
ntu-94-R91222052-1.pdf: 3590349 bytes, checksum: e9f311cd9ea5be422b775fdd2d244899 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents1 Introduction ……………………………………………………………………...3
2 Theory and method ………………………………………………………………4
2.1 Many-body system ...……………………………………………………….4
2.1.1 The Born-Oppenheimer approximation ……………………………5
2.1.2 Thomas-Fermi theory ……………………………………………....7
2.2 Density-functional Theory ...………………………………………………12
2.2.1 The Hohenberg-Kohn formulation of density-functional theory …12
2.2.2 The self-consistent Kohn-Sham equation …………………………16
2.2.3 The local density approximation and the generalized gradient approximation ……………………………………………………..21
2.3 Force constant method approach to phonon ………………………………22
2.3.1 Harmonic approximation ………………………………………….22
2.3.2 Solving the equation of motion …………………………………...23
2.3.3 Calculate the force constants and decide the cut-off radius …...….24
2.3.4 Acoustic phonon, sound velocity and elastic constants …………..25
3 Applications of the force-constant method ……………………………………27
3.1 Cubic elements: diamond and silicon ……………………………………..27
3.2 3d transition metals : iron, cobalt, and nickel ……………………………..34
3.2.1 Iron ………………………………………………………………..34
3.2.2 Cobalt .…………………………………………………………….36
3.2.3 Nickel ……………………………………………………………..38
3.3 The stability under high pressure …………………………………………40
3.3.1 The stability of iron under high pressure ………………………….40
3.3.2 The phonon dispersions of cobalt under high pressure …………...43
4 The lattice dynamic of uranium ……………………………………………...…47
4.1 Motivation…………………………………………………………………47
4.2 The structure of α-uranium ………………………………………………..47
4.2.1 Computational detail ……………………………………………...48
4.3 The phonon dispersion relation of uranium ………………………………49
4.3.1 The phonon dispersions of uranium in [010] and [001] direction ...50
4.3.2 Discussions(I) ……………………………………………………..52
4.3.3 The phonon dispersions of uranium in [100] direction …………...53
4.3.4 Discussions(II) …………………………………………………….53
5 Conclusions …………………………………………………………………….55
6 Bibliography ……………………………………………………………………57
dc.language.isozh-TW
dc.title以第一原理密度泛函理論研究鈾和其他材料的晶格振動行為zh_TW
dc.titleLattice dynamics of uranium and other elements by ab-initio force-constant method:Effect of on-siteU and spin-orbit couplingen
dc.typeThesis
dc.date.schoolyear93-1
dc.description.degree碩士
dc.contributor.oralexamcommittee胡崇德,薛宏中
dc.subject.keyword力常數矩陣,聲子,zh_TW
dc.subject.keywordphonon,dynamics matrix,forces-constant method,en
dc.relation.page59
dc.rights.note有償授權
dc.date.accepted2005-01-28
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  目前未授權公開取用
3.51 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved