Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3914
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor詹魁元(Kuei-Yuan Chan)
dc.contributor.authorTzu-Chieh Hungen
dc.contributor.author洪子頡zh_TW
dc.date.accessioned2021-05-13T08:38:28Z-
dc.date.available2016-08-01
dc.date.available2021-05-13T08:38:28Z-
dc.date.copyright2016-07-26
dc.date.issued2016
dc.date.submitted2016-07-03
dc.identifier.citation[1] 經濟部能源局, “能源統計年報.” http://www.moeaboe.gov.tw/. 存取時間:2015-12-15.
[2] 經濟部能源局, “97 年各類發電單位成本表(燃料別).” http://www.moeaboe.gov.tw/. 存取時間:2015-12-15.
[3] 台灣電力股份有限公司, “歷年核能發電成本.” http://www.taipower.com.tw/. 存取時間:2016-05-04.
[4] 經濟部能源局, “永續能源政策綱領.” http://www.moeaboe.gov.tw/. 存取時間:2015-12-15.
[5] “The great blackout of 2003.” http://www.museumofhoaxes.com/hoax/photo_database/image/the_great_blackout_of_2003/. Accessed: 2016-05-01.
[6] 台灣電力股份有限公司, “線路損失率.” http://www.taipower.com.tw/. 存取時間:2015-12-15.
[7] SAS Institute Inc., “Visual Analytics helping energy companies transform big data,power better decisions.” http://www.sas.com/. Accessed: 2015-12-15.
[8] ENERCON,“ENERCONproductoverview.”http://www.enercon.de/.Accessed:2016-05-01.
[9] A. Yella, H.-W. Lee, H. Tsao, C. Yi, A. Chandiran, M. Nazeeruddin, E. W.-G. Diau, C.-Y. Yeh, S. Zakeeruddin, and M. Grätzel, “Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency,” Science, vol. 334, no. 6056, pp. 629–634, 2011.
[10] R. Panda, T. Sarkar, and A. Bhattacharya, “Stochastic Study of the Wind-Energy Potential of India,” Energy, vol. 15, no. 10, pp. 921–930, 1990.
[11] K. Nigim and P. Parker, “Heuristic and Probabilistic Wind Power Availability Estimation Procedures: Improved Tools for Technology and Site Selection,” Renewable Energy, vol. 32, no. 4, pp. 638–648, 2007.
[12] F. Ahwide, A. Spena, and A. El-Kafrawy, “Estimation of Electricity Generation in Libya Using Processing Technology of Wind Available Data: The Case Study in Derna,” APCBEE Procedia, vol. 5, no. January, pp. 451–467, 2013.
[13] J. Torres, A. García, M. De Blas, and A. De Francisco, “Forecast of Hourly Average Wind Speed with ARMA Models in Navarre (Spain),” Solar Energy, vol. 79, no. 1, pp. 65–77, 2005.
[14] R. Karki, P. Hu, and R. Billinton, “A Simplified Wind Power Generation Model for Reliability Evaluation,” Energy Conversion, IEEE Transactions on, vol. 21, no. 2, pp. 533–540, 2006.
[15] H.AlBuflasa,D.Infield,S.Watson,andM.Thomson,“WindResourceAssessment for the Kingdom of Bahrain,” Wind Engineering, vol. 32, no. 5, pp. 439–448, 2008.
[16] H. Zhou and J. Fang, “Wind Power Forecasting Based on Econometrics Theory,” in Electric Power and Energy Conference (EPEC), 2010 IEEE, pp. 1–6, 2010.
[17] R. de Aquino, T. Ludermir, O. Nobrega Neto, A. Ferreira, M. Lira, and M. Carvalho, “Forecasting Models of Wind Power in Northeastern of Brazil,” in The 2013 International Joint Conference on Neural Networks (IJCNN), pp. 1–8, 2013.
[18] S. Gonzales Chavez, J. Xiberta Bernat, and H. Llaneza Coalla, “Forecasting of Energy Production and Consumption in Asturias (Northern Spain),” Energy, vol. 24, no. 3, pp. 183–198, 1999.
[19] J. Nowicka-Zagrajek and R. Weron, “Modeling Electricity Loads in California: ARMA Models with Hyperbolic Noise,” Signal Processing, vol. 82, no. 12, pp. 1903–1915, 2002.
[20] A. Safdarian, M. Fotuhi-Firuzabad, M. Lehtonen, M. Aghazadeh, and A. Ozdemir, “A New Approach for Long-Term Electricity Load Forecasting,” in Electrical and Electronics Engineering (ELECO), 2013 8th International Conference on, pp. 122– 126, 2013.
[21] W. He, “Forecasting Electricity Load with Optimized Local Learning Models,” International Journal of Electrical Power & Energy Systems, vol. 30, no. 10, pp. 603– 608, 2008.
[22] I. Koprinska, M. Rana, and V. Agelidis, “Yearly and Seasonal Models for Electricity Load Forecasting,” in Neural Networks (IJCNN), The 2011 International Joint Conference on, pp. 1474–1481, 2011.
[23] M. Peik-herfeh, H. Seifi, and M. Sheikh-El-Eslami, “Optimal Dispatch of Distributed Energy Resources Included in a Virtual Power Plant for Participating in a Day-Ahead Market,” in Clean Electrical Power (ICCEP), 2011 International Conference on, pp. 204–210, 2011.
[24] A. Man-Im, W. Ongsakul, J. Singh, and C. Boonchuay, “Multi-Objective Economic Dispatch Considering Wind Generation Uncertainty Using Non-Dominated Sorting Particle Swarm Optimization,” in Green Energy for Sustainable Development (ICUE), 2014 International Conference and Utility Exhibition on, pp. 1–6, 2014.
[25] M. Li, T. Ji, Q. Wu, and P. Wu, “Economic Dispatch with Ramp Constraints Concerning Wind Power Uncertainty,” in PES General Meeting | Conference Exposition, 2014 IEEE, pp. 1–5, 2014.
[26] S. Mohseni-Bonab, A. Rabiee, and B. Mohammadi-Ivatloo, “Voltage Stability Con- strained Multi-Objective Optimal Reactive Power Dispatch under Load and Wind Power Uncertainties: A Stochastic Approach,” Renewable Energy, vol. 85, pp. 598– 609, 2016.
[27] R. Li, Y. Gao, H. Cheng, and H. Liang, “Two Step Optimal Dispatch Based on Multiple Scenarios Technique for Active Distribution System with the Uncertainties of Intermittent Distributed Generation and Load Considered,” in Power System Technology (POWERCON), 2014 International Conference on, pp. 3303–3308, 2014.
[28] M. Peik-herfeh, H. Seifi, and M. Sheikh-El-Eslami, “Two-Stage Approach for Optimal Dispatch of Distributed Energy Resources in Distribution Networks Considering Virtual Power Plant Concept,” Electric Power Systems Research, vol. 24, no. 1, pp. 43–63, 2014.
[29] F. Katiraei and C. Abbey, “Diesel Plant Sizing and Performance Analysis of a Remote Wind-Diesel Microgrid,” in Power Engineering Society General Meeting, 2007. IEEE, pp. 1–8, 2007.
[30] Z. Gao, P. Wang, L. Bertling, and J. Wang, “Sizing of Energy Storage for Power Systems with Wind Farms Based on Reliability Cost and Wroth Analysis,” in Power and Energy Society General Meeting, 2011 IEEE, (Detroit, MI, United States), pp. 1– 7, 2011.
[31] S. Dutta and R. Sharma, “Optimal Storage Sizing for Integrating Wind and Load Forecast Uncertainties,” in Innovative Smart Grid Technologies (ISGT), 2012 IEEE PES, (Washington, DC, United states), pp. 1–7, 2012.
[32] A.Roy,S.Kedare,andS.Bandyopadhyay,“Application of Design Space Methodology for Optimum Sizing of Wind–Battery Systems,” Applied Energy, vol. 86, no. 12, pp. 2690–2703, 2009.
[33] A. Roy, S. Kedare, and S. Bandyopadhyay, “Optimum Sizing of Wind-Battery Systems Incorporating Resource Uncertainty,” Applied Energy, vol. 87, no. 8, pp. 2712– 2727, 2010.
[34] W. Chen, Q. Li, L. Shi, Y. Luo, D. Zhan, N. Shi, and K. Liu, “Energy Storage Sizing for Dispatchability of Wind Farm,” in Environment and Electrical Engineering (EEEIC), 2012 11th International Conference on, pp. 382–387, Ieee, 2012.
[35] J. Whitefoot, A. Mechtenberg, D. Peters, and P. Papalambros, “Optimal Component Sizing and Forward-Looking Dispatch of an Electrical Microgrid for Energy Storage Planning,” in Proceedings of the ASME 2011 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, (Washington, DC, United states), pp. 341–350, 2011.
[36] O. Hafez and K. Bhattacharya, “Optimal Planning and Design of a Renewable Energy Based Supply System for Microgrids,” Renewable Energy, vol. 45, pp. 7–15, 2012.
[37] C. Torrence and G. Compo, “A practical guide to wavelet analysis,” Bulletin of the American Meteorological Society, vol. 79, no. 1, pp. 61–78, 1998.
[38] Mathworks, “Matlab,” 2013.
[39] D. Kwiatkowski, P. Phillips, P. Schmidt, and Y. Shin, “Testing the null hypothesis of stationarity against the alternative of a unit root,” Journal of Econometrics, vol. 54, no. 1, pp. 159 – 178, 1992.
[40] S. Lu, N. B. Schroeder, H. M. Kim, and U. V. Shanbhag, “Hybrid Power/Energy Generation Through Multidisciplinary and Multilevel Design Optimization With Complementarity Constraints,” Journal of Mechanical Design, vol. 132, no. 10, p. 101007, 2010.
[41] P. J. Brockwell and R. A. Davis, Introduction to Time Series and Forecasting. Springer, 2nd ed., 2002.
[42] 內政部統計處, “內政統計年報.” http://www.moi.gov.tw/stat/. 存取時間:2016- 05-03.
[43] 台灣電力股份有限公司, “過去電力供需資訊.” http://www.taipower.com.tw. 存取 時間:2015-12-15.
[44] 台南市安平區戶政事務所, “人口統計資料.” http://www.tnapcg.gov.tw/. 存取時 間:2016-05-03.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3914-
dc.description.abstract在能源發展的議題中,再生能源開發與電力系統轉型是邁向能源永續的兩大關鍵,而為了有效率地將再生能源應用於電力系統中,勢必需要長期且有系統的評估與規劃。
本論文針對整合再生能源的微電網系統規劃問題,提出一套完整的配電與設備規劃流程,此流程不僅包含了風能評估與用電預測,更同時考量了電力系統運行時的配電策略。此流程使用小波轉換與時間序列等數據分析方法建構風速與用電模型,並將所得之模型應用於流程中的配電與設備規劃,以獲得最適合該電力系統的的設備規模以及配電策略。在完成了配電與設備規劃後,本研究使用歷史數據模擬電力系統的實際運作狀況,以驗證最佳化結果的可行性。模擬結果顯示,在整合配電策略的設備規劃問題中,必須考量風速與用電等不確定因素,才能確保電力系統的可行性。
為了量化風速與用電不確定性對配電策略與電力系統所產生的影響,本論文提出了一套以機率理論為基礎的長期配電規劃。此長期配電規劃方法考量了風速與用電的不確定性,可以提供發電廠的可能操作範圍與儲能設備的電能存量變動範圍。發電廠的可能操作範圍使此配電規劃具有即時調整的彈性;而儲能設備的電能存量變動範圍則提供了更充足的資訊,以利決策者決定適當的裝置容量。在儲能設備的裝置容量決定後,文中亦使用歷史數據進行模擬驗證,而其結果顯示,此長期配電規劃方法可以有效地量化不確定因素對於電力系統所產生的影響,因此決策者可以透過此配電規劃的結果決定適當的儲能設備裝置容量。
本論文所提出之設計流程整合了電力系統的配電與設備規劃,針對目前的電力系統提出了一個漸進式的轉型方案。決策者可以藉由反覆的執行此流程,引領目前的電力系統逐步朝向可以獨立運作的微電網系統邁進,以達到能源永續的最終目標。
zh_TW
dc.description.abstractThe global quest for energy sustainability has motivated the development of transforming various natural resources into energy efficiently. Combining these renewable energy sources with existing power systems requires systematic assessments and planning.
The present work proposes a design procedure for obtaining the optimal sizes of wind turbines and storage devices considering power dispatch with wind and load forecasting. At first, the wind and load models are constructed by wavelet packet analysis and moving average technique. These models are applied to the design procedure to determine the optimal sizes and optimal dispatch strategy. Then, a real-time operating simulation is used to validate the feasibility of the optimal results in the real world. Results show that the models used in the optimization framework should consider the uncertainties to maintain high system feasibility.
To quantify the influence of wind and load uncertainties in the optimal sizing and dispatch problem more practically, a novel probability-based power dispatch strategy is proposed. The new strategy estimates a probable dispatch range for a long-term power dispatch and quantifies the variation of the state of charge of energy storages under wind and load uncertainties. The probable dispatch range provides more real-time flexibility for the long-term power dispatch, and the variation provides more information for determination of storage capacity. After determining a suitable storage capacity, a validation simulation is also used to observe the behavior of the power system. Results show that the probability-based power dispatch strategy could estimate the probable range and variation effectively, and that the capacity of energy storage is well determined.
This work integrates equipment sizing and power dispatch problem into the design procedure. The procedure provides a gradual planning of a power system, leads the existing power system toward microgrid system, and eventually reaches energy sustainability.
en
dc.description.provenanceMade available in DSpace on 2021-05-13T08:38:28Z (GMT). No. of bitstreams: 1
ntu-105-D02522031-1.pdf: 13867074 bytes, checksum: ea309a8c5cc79dd7209a99b432408024 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
摘要 iv Abstract vi
目錄 viii
圖目錄 xi
表目錄 xiii
符號列表 xiv
第一章 緒論 1
1.1 前言 1
1.2 電力系統簡介 3
1.3 永續能源發展政策簡介 5
1.4 研究動機與研究目的 7
1.5 本文架構 8
第二章 研究背景與文獻回顧 10
2.1 再生能源潛勢評估與發電預測 10
2.2 電力用戶用電預測 12
2.3  智慧電網配電控制 12
2.4  電力系統設備規劃 13
2.5  小結 14
第三章 研究方法 16
3.1  數據分析與模型建構概述 17
3.2  區域電網系統模型與配電策略規劃概述 19
3.3  電力系統設備規劃概述 20
3.4  小結 21
第四章 風速數據分析與相關模型建構 22
4.1  風速數據分析 22
4.2  風速模型建構 26 
 4.3  風機模型介紹 30 
 4.4  風能模型建構與逆累積分布函數方法簡介 30 

第五章 發電量數據分析與區域用電模型建構 33
5.1  發電量數據分析 33
5.2  區域用電模型建構 36
第六章 整合配電策略之電力系統設備規劃 39
6.1  考量風速趨勢之配電與設備規劃 40
6.1.1 風力發電機組之額定功率最佳化 41
6.1.2 儲能設備之裝置容量最佳化 44
6.1.3 風力發電機組與儲能設備之多目標最佳化 47 
 6.2  考量風速不確定性之電力系統設備規劃 48
6.2.1 風力發電機組之額定功率最佳化 49
6.2.2 儲能設備之裝置容量最佳化 49
6.3 小結 51
第七章 考量不確定因素下即時配電彈性之長期策略規劃 53
7.1  長期配電策略改良 53 
 7.2  案例分析 55
第八章 結論 59
8.1  結果與討論 59
8.2  研究貢獻 62
8.3  研究建議與未來研究方向 63
參考文獻 65
作者簡歷 71
dc.language.isozh-TW
dc.title不確定因素下整合風能微電網系統之設備規劃與配電策略最佳化zh_TW
dc.titleOptimization of a Wind-Integrated Microgrid System with Equipment Sizing and Dispatch Strategy under Resource Uncertaintyen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree博士
dc.contributor.oralexamcommittee鍾添東(Tien-Tung Chung),吳文方(Wen-Fang Wu),瞿志行(Chih-Hsing Chu),林大惠(Ta-Hui Lin),鄭榮和(Jung-Ho Cheng)
dc.subject.keyword能源永續,能源政策,微電網,能源預測,配電規劃,風力發電,不確定因素,最佳設計,zh_TW
dc.subject.keywordenergy sustainability,energy policy,microgrid,energy forecasting,power dispatch,wind energy,design under uncertainty,en
dc.relation.page72
dc.identifier.doi10.6342/NTU201600638
dc.rights.note同意授權(全球公開)
dc.date.accepted2016-07-04
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf13.54 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved