Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39094
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor許明仁
dc.contributor.authorCheng-Ling Chenen
dc.contributor.author陳正齡zh_TW
dc.date.accessioned2021-06-13T17:01:45Z-
dc.date.available2005-02-04
dc.date.copyright2005-02-04
dc.date.issued2005
dc.date.submitted2005-01-31
dc.identifier.citation尤新輝 1992 蘋果汁加工與品質變化之探討 食品工業 24(5):18-29
王禮陽 1994 芒果 p. 156-157 台灣果菜誌 時報文化出版企業有限公司
朱芸芳 2000 菠菜汁混濁安定性之研究 台灣大學食品科技研究所碩士論文
朱燕華 2001 類胡蘿蔔素簡介 食品工業 33(4):1-5
吳瑞碧 1985 添加鈣鹽以提高番茄汁產品黏度之研究 國科會研究報告
呂維明、呂文芳 1994 過濾技術 高立圖書有限公司
吳秋霖、林湘芸、黃雅苹、李柏諺、吳明昌 2002 紅蘿蔔汁中果膠酯酶的熱特性 屏東科技大學學報 11(2):87-91
林瑞雯 2002 金柑全果系果汁降低苦味與改善黏稠度之研究 台灣大學園藝學研究所碩士論文
林靜宜 2001 巴斯德殺菌芒果汁求最適溫度與時間之探討 屏東科技大學食品科學研究所碩士論文
施靄芬 1992 胡蘿蔔在在烹煮過程中質地變化與果膠質化學變化之相關性及果膠分子間交互作用模式之研究 台灣大學農業化學研究所碩士論文
徐源泰、徐偉益、黃蕙萱 1996 芒果果汁製程改進之研究 食品科學 23(4): 469-482
張為憲 1987 高等食品化學 華香園出版社
張基郁 1990 敏豆莢在烹煮過程中質地變化與果膠質化學變化之相關性及果膠分子間交互作用模式之研究 台灣大學食品科技研究所博士論文
陳李國 1987 番茄製品中蛋白質和果膠的交互作用及其對黏度的影響 台灣大學食品科技研究所碩士論文
陳炳輝 2000 類胡蘿蔔素的特性與應用 科學發展月刊 28(8): 599-604
陳展東 1987 番石榴果膠酯酶的部分純化及其耐熱性質的探討 台灣大學食品科技研究所碩士論文
陳惠蓉 1990 番石榴果汁之澄清加工 台灣大學食品科技研究所碩士論文
陳德昇 1985 番茄汁於熱破碎過程中,果膠酶和纖維素酶對其流變特性和化學成分之影響荔枝果汁混濁穩定性之研究 台灣大學食品科技研究所碩士論文
曾昭宏 2000 防止澄清橫山梨果汁混濁生成之研究 台灣大學園藝學研究所碩士論文
彭詩育 2003 台灣愛文芒果產業要素替代與經濟效益之研究 台灣大學農業經濟研究所碩士論文
黃錦城 1992 最新果汁飲料加工技術 食品工業發展研究所
黃錦城 2000 酸性果汁形成雲霧狀懸浮物之原因 食品工業 32(3):24-31
劉家瑞 2001 荔枝果汁混濁穩定性之研究 台灣大學園藝學研究所碩士論文.
鄭秋惠 1991 防止澄清李子果汁混濁沉澱之研究 台灣大學園藝學研究所碩士論文.
賴麗旭 1996 添加氯化鈣對芭樂汁黏度之影響及其可能作用機制 行政院國家科學委員會專題研究企劃成果報告
賴滋漢、賴業超 1994 食品科技辭典 富林出版社
戴宏桂 1995 澄清荔枝果汁製備與其品質之研究 台灣大學園藝學研究所碩士論文.
顏國欽、孫璐西 1995 類胡蘿蔔素 p. 270-274 食品化學 華香園出版社
顏國欽、黃成家、林信堂、楊世沛 1993 以反應曲面法探討番石榴果泥之最適熱加工與凍藏條件 食品科學 20(2):124-135
丹保憲仁、小笠原紘一 1988 水的淨化 p. 27-132 淨水技術實務 復漢出版社
Asano, K., Shinagawa, K., and Has himoto, N. 1982. Characterization of haze-forming proteins of beer and their roles in chill haze formation. J. Am. Soc. Brew. Chem. 40(4):147-157.
Baker, R. A. 1976. Clarification of citrus juices with polygalacturonic acid. J. Food Sci. 41:1198-2000.
Baker, R. A. and Bruemmer, J. H. 1972. Pectinase stabilization of orange juice cloud. J. Agric. Food Chem. 20:1169-1173.
Baker, R. A. and Cameron, R. G. 1999. Cloud of citrus juices and juice drinks. Food Technol. 53(1):64-69.
Beveridge, T. 1997. Haze and cloud in apple juices. Critical Reviews in Food Science and Nutrition. 37(1):75.
Beveridge, T. and Tait, V. 1993. Structure and composition of apple juice haze. Food Structure. 12:195.
Bianco, A., Chiacchio, U., Rescifina, A., Roneo, G., and Uccella, N. 1997. Biomimeic supramolecular biophenol-carbohydrate and biophenol-protein models by NMR experiments. J. Agric. Food Chem. 45:4281-4285.
Borowaka, J., Zadernowski R., Zander L., Fornal J., Markiewicz K., Kubiak A., and Kowalska M. 2000. Application of enzymes in the production of pulpy carrot juice. Fruit Processing. 10:162-169.
Boyes, S., Striubi, P., and Dawes, H. 1997. Measurement of protein content in fruit juice, wine and plant extracts in the presence of endogenous organic compounds. Lebensm.-Wiss. U.-Technol. 30:778-785.
Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254.
Cameron, R. G., Baker, R. A., and Grohmann, K. 1998. Multiple forms of pectinmethylesterase from citrus peel and their effects on juice cloud stability. J. Food Sci. 63(2):253.
Caradec, P.L. and Nelson, P.E. 1985. Effect of temperature on the serum viscosity of tomato juice. J. Food Sci. 50:1497.
Carle, R. 1998. Cloud stability of pulp-containing tropical fruit nectars. Fruit Processing. 7:266-272.
Carle, R. 1999. Physical and chemical stability of ATBC-drinks. Fruit Processing. 9:342-349.
Chang, C.Y., Lai, L.R., and Chand, W.H. 1995. Relationships between changes and the changes in linkages of pectic substances of sweet pepper during cooking process, and the applicability of the models of interactions between pectin molecules. Food Chem. 53:409-416.
Chanlder, B. V. and Robertson, G. L. 1983. Effect of pectin enzyme on cloud stability and soluble limonin concentration in stored orange juice. J. Sci. Food. Agric. 34:599-611.
Chen, B. H., Peng, H. Y., and Chen H. E.. 1995. Changes of carotenoids, color, and vitamin A contents during processing of carrot juice. J. Agric. Food Chem. 43: 1912-1918.
Chen, B. H., and Tang Y. C. 1998. Processing and stability of carotenoid powder from carrot pulp waste. J. Agric. Food Chem. 46: 2312-2318.
Chen, H. E., Peng H. Y., and Chen B. H. 1996. Stability of carotenoid and vitamin A during storage of carrot juice. Food Chem. 57(4): 497-503.
Crandall, P. G., Matthews, R. F., and Baker, R. A. 1983. Citrus beverage clouding agents- review and status. Food Technol. 12:106-109.
Deuel, H. and Stutz, E. 1958. Pectin substances and pectic enzymes. Adv. Enxymol. 20:341.
Dickinson, E. 1994. Colloidal aspects of beverages. Food Chem. 51:343-347.
Endo, A, 1965. Studies on pectolytic enzymes of molds. Part XVI: mechanism of enzymatic clarification of apple juice. Agric. Biol. Chem. 29(3):229-233.
Farnworth, E. R., Lagace M., Couture R., Yaylayan V., and Stewart B. 2001. Thermal processing, storage conditions, and the composition and physical properties of orange juice. Food Research International. 34:25-30.
Fogarty, W. M. and Ward, O. P. 1972. Pectic substances and pectinolytic enzymes. Process Biochemistry. 13-17.
Gao, L., Beveridge T. and Reid C.A. 1997. Effect of processing and packaging conditions on haze formation in apple juice. Lebensm.-Wiss. U.-Technol. 30:23-29.
Genovese, D. B., Elustondo, M. P. and Lozano, J. E. 1997. Color and cloud stabilization in cloudy apple juice by steam heating during crushing. J. Food Sci. 62:(6)1171-1175.
Gross, J. 1991. Pigments in vegetables: chlorophylls and carotenoids. Van Nostrand Reinhold, New York.
Groven, S. 1995. Hydrocolloids for use in soft drinks. Fruit Processing. 12:388-393.
Heatherbell, D. A. 1976. Haze and sediment formation in clarified apple juice and apple wine. II. The role of polyvalent cations, polyphenolics and protein. Food Technol. In New Zealand. 11:17-23.
Julkunen-Titto, R. 1985. Phenolic constituents in the levels of northern willows: Methods for precursors of clarified apple juice sediment. J. Food Sci. 33:254-257.
Kawabata, A., Sawayama, S., Nakahara, H., and Kamata, T. 1981. Mechanism of association of various demethylated pectins by calcium ions. Agric. Biol. Chem. 45:965.
Keijbets, M. J. H. and Pilink, W. 1974. β-elimination of pectin in the presence of anious and cations. Carbohydrate Research. 33:359.
Kilara, A. 1982. Enzyme and their uses in the processed apple industry: Review process. Biochem. 7:77-82.
Klavons, J. A. and Bennett, R. D. 1985. The nature of the protein constituent of commercial lemon juice cloud. J. Agric. Food Chem. 33:708.
Klavons, J. A. and Bennett, R. D. 1987. Nature of the pectin constituent of commercial lemon juice cloud. J. Agric. Food Chem. 35:159.
Klavons, J. A., Bennett, R. D., and Vannier, S. H. 1994. Physical/chemical nature of pectin associated with commercial orange juice cloud. J. Food Sci. 59(2):399.
Kulp, K. 1975. Pectic enzymes and pectin methylesterase. In “Enzymes in food Processing.” 2nd.ed., ed. by Reed, G. p.107. Academic Press. New York.
Laratta, B., Fasanaro G., De Sio F., Castaldo D., Palmieri A., Giovane A., and Servillo L. 1995. Thermal inactivation of pectin methylesterase in tomato puree: implications on cloud stability. Process Biochemistry. 30(3): 251-259.
Luh, B.S. and Daoud, H.N. 1971. Effect of break temperature and holding time on pectin and pectic enzymes in tomato pulp. J. Food Sci. 36:1039-1043.
Markowski, J. 1998. Some factors affecting quality and stability of cloudy apple juice. Fruit Processing. 7:277-282.
Mayer-Miebach, E. and SpieB W.E.L. 2003. Influence of cold storage and blanching on the carotenoid content of Kintoki carrots. J. of Food Eng. 56: 211-213.
McCready, R. M., Owens, H. S., and Maclay, W. D. 1944. Alkali- Hydrolyzed pectins are potential industrial products. I. Food Ind. 16:69. CA 39:1233(1945).
Price, M.L., and Bulter, L.G. 1977. Rapid visual estimation and spectrophotometric determination of tannin content of sorghum grain. J. Agric. Food Chem. 25(6):1268-1273.
Robert, A. B. and Randall G. C. 1999. Clouds of citrus juices and juice drinks. Food Technology. 53:64-69.
Rouse, A. H. and Atkins, C. D. 1952. Heat inactivation of pectinesterase in citrus juices. Food Technol. 6:291-294.
Rriter., M., Stuparic M., Neidhart S., and Carle R. 2003. The role of process technology in carrot juice cloud stability. Lebensm-Wiss. U.-Technol. 36:165-172.
Scott, W. C., Ken, T. J., and Veldhuis, M. K. 1965. Composition of orange juice cloud. J. Food Sci. 30:833.
Sims, C. A., Balaban M. O., and Matthews R. F. 1993. Optimization of carrot juice color and cloud stability. J. Food Sci. 58:1129-1131.
Stephens, T. S., Saldona G., Brown H.E., and Griffiths F.P. 1971. Stabilization of carrot juice by dilute acid treatment. J. Food Sci. 36:36-38.
Takada, N. and Nelson, P.E. 1983. A new consistency method for tomato product: the precipitate weight ratio. J. Food Sci. 48:1460.
Tang, Y. C. and Chen B.H. 2000. Pigment change of freeze-dried carotenoid powder during storage. Food Chem. 69: 11-17.
Tanglertpaibul, T. and Rao, M.A. 1987. Flow properties of tomato concentrates: effect of serum viscosity and pulp content. J. Food Sci. 52:318.
Tijskens, L. M. M., Waldron K.W., Ng A., Ingham L., and van Dijk C. 1997. The kinetics of pectin methyl esterase in potatoes and carrots during blanching. J. of Food Engineering. 34:371-385.
Van Buren, J. P. 1979. The chemistry of texture in fruits and vegetables. J. Texture Stud. 10:1.
Van Buren, J. P. 1989. Causes and prevention of turbidity in apple juice. In “Processed Apple Products”. Downing. D. L. Ed. Van Nostrand Reinhold. New York.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39094-
dc.description.abstract芒果汁飲料屬於果肉系的混濁果汁,不溶性固形物的含量很高,是構成芒果汁飲料特有風味與口感的主要因素。芒果原汁在製成稀釋果汁後,很容易發生果肉分層的現象。本論文採用台南縣六甲鄉農會所生產之冷凍愛文芒果原汁為實驗原料,探討造成芒果原汁稀釋後加熱生成果肉分層的原因,並以不同均質條件處理稀釋後之芒果汁,以分析芒果汁飲料中的顆粒粒徑分布與水溶性果膠含量對果汁混濁穩定性之影響。
20%芒果汁在經過不同條件熱處理後,以95℃/30sec出現最顯著的果肉上浮情形,可見高溫加熱會促使稀釋芒果汁分層變得較不穩定。分析熱處理後各分層的組成分,以水溶性果膠在果清與果肉分層之間的含量差異最大,果肉的水溶性果膠含量明顯高於果清,因此推測水溶性果膠為影響稀釋芒果汁混濁安定性的最主要因子。
隨著均質處理時間的增長,稀釋芒果汁的粒徑分布會逐漸向小顆粒方向移動。均質時間對於粒徑小於34.58μm以下顆粒所佔體積百分比有成正比的趨勢,在此範圍的顆粒中,加熱前後的40%芒果汁經長時間(10min)均質而增加的幅度平均約1.67%,而20%芒果汁則約為1.39%左右,因此40%芒果汁受到均質時間長短的影響較20%芒果汁來得大。40%芒果汁在均質2分鐘以上,果汁顆粒粒徑明顯的較20%芒果汁相同均質條件下來得小。
40%芒果汁在均質0~3分鐘內水溶性果膠即大量釋出,有明顯的均質效應,3分鐘之後增加趨勢則趨緩。20%芒果汁在均質0~3分鐘內水溶性果膠無明顯增加,不具有均質效應,均質3分鐘之後水溶性果膠釋出量明顯增加。因此,20%芒果汁在均質3分鐘時,果汁顆粒受到均質的切割效應已趨近平衡,故3分鐘之後的均質處理,較類似在進行攪拌的動作,而將果肉顆粒中的水溶性果膠大量溶出。
稀釋芒果汁之不可溶性固形物結合水溶性果膠量對混濁穩定性有很大的影響。不可溶性固形物所結合的果膠量越少,表示游離的果膠量越多,有助於維持果汁的混濁安定性。20%芒果汁在均質10分鐘以上,不可溶性固形物結合果膠量始有顯著降低的情形,而40%芒果汁在均質2分鐘後不可溶性固形物結合果膠量即有顯著下降,均質5分鐘之後亦有顯著降低,因此低濃度果汁(20%)的均質時間必須較高濃度果汁(40%)長,才能有效的改善混濁安定性。
在相同均質條件下,20%及40%芒果汁經加熱(95℃,30秒)並以超高速離心(9500×g,30分鐘)後,果清之水溶性果膠含量均有增加的情形,可知熱處理可促使水溶性果膠釋出。隨著均質時間的增長,發現長時間均質(10分鐘)較短時間均質(2分鐘)更能使游離的水溶性果膠增加,並可顯著降低不可溶性固形物結合果膠量,因此可明顯提高稀釋芒果汁的混濁穩定性。
zh_TW
dc.description.abstractMango juice drink is typical cloudy juice. The high content of fruit pulp contributes to the special flavor and taste of mango juice products. However, the sedimentation often occurred in processed dilute mango juice drink during storage. The objectives of this study are to investigate the factors resulting in the sedimentation of mango juice drink, and to analyze the effect of homogenization treatments and solid particle distribution on the cloud stability of the dilute mango juice drink.
Having analyzed chemical constituent of three pulp separation layers formed in dilute mango juice drinks after 95oC heating for 30sec, the soluble pectin content in each layer shows great difference. Pulp layer contains significantly higher soluble pectin than the serum layer. The results indicate soluble pectin may play an important role in the cloud stability of the dilute mango juice drink.
The volume of smaller particle size in mango juice drink tends to increase with the extension of homogenization (1000rpm) time, especially for the particle diameter smaller than 34.58μm. The average increases of percent volume for the particle size below 34.58μm in 20% and 40% mango juice drinks are 1.39% and 1.67%, respectively. Homogenization has greater effect on particle size reduction in 40% mango juice drink than in 20% mango juice drink.
Homogenization of 40% mango juice drink within 3min, the soluble pectin content increased rapidly in the serum. In contrast, soluble pectin content in the serum of 20% mango juice drink began to increase after homogenization for more than 3min. The later result may due to the stirring effect rather than homogenization.
The dissociation of soluble pectin from insoluble solid/soluble pectin complex plays an important role in the increase of cloud stability in mango juice drink. Homogenization of 40% mango juice drink for 2min significantly increased the soluble pectin in the serum. For 20% mango juice drink, it took more than 5min homogenization to start increasing soluble pectin content in the serum. Thermal treatment of mango juice drinks at 95oC for 30sec also resulted in the increase of free soluble pectin. The better cloud stability of 20% mango juice drink with longer homogenization time in shelf-life study suggests that free soluble pectin content is the key factor to the cloud stability in mango juice drink.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T17:01:45Z (GMT). No. of bitstreams: 1
ntu-94-R91628202-1.pdf: 983236 bytes, checksum: 08f5a76559b72da6149aa8646dfccb5d (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents中文摘要………………………………………………………………….I
英文摘要………………………………………………………….…….III
目錄…………………………………………………………………...…V
圖目錄……………………………………………………………….…VII
表目錄………………………………………………………………...…X
壹、前言…………………………………………………………………..1
貳、前人研究……………………………………………………………..6
一、果汁膠體性質…………………………….. ……………………...6
二、引起果汁混濁或沉澱之因子……………………………………..7
(一)生物性因子…………………………………………….……...8
(二)物理性因子…………………………………………………....8
(三)化學性因子………………………………………….…….…..9
三、維持果汁混濁穩定性之方法……………………………..……..17
四、果膠物質………………………………………………….……..23
(一)果膠物質簡介………………………………………………..23
(二)果膠分子之化學變化………………………………………..26
參、材料與方法…………………………………………………………30
一、實驗原料…………………………………………………………30
二、試藥……………………………………………………………....30
三、實驗方法…………………………….. ……………………….…30
(一)加熱處理對稀釋芒果汁分層及組成分變化的影響……….30
(二)相同均質條件下不同濃度稀釋芒果汁對混濁穩定性之影響
……………………………………………………………..31
(三)不同均質及熱處理條件對稀釋芒果汁理化特性之影響….31
(四)均質處理時間對稀釋芒果汁混濁安定性之影響…………..31
(五)分析方法……………………………..………………………33
肆、結果與討論…………………………………………………………37
一、加熱處理對稀釋芒果汁分層及組成分變化的影響……………37
1. 果汁分層之變化……………………………………………….37
2. 組成分之變化……………………………………………...…..37
二、相同均質條件下不同濃度稀釋芒果汁對混濁穩定性之影響…45
三、不同均質及熱處理條件對稀釋芒果汁理化特性之影響………52
1. 顆粒分布之變化……………………………………………….52
2. 水溶性果膠含量之變化……………………………………….64
四、均質處理時間對稀釋芒果汁混濁安定性之影響………………78
1. 加熱處理對顆粒數量之影響………………………………….78
2. 均質時間及熱處理對水溶性果膠含量及混濁穩定性之影響.80
伍、結論…………………………………………………………………88
陸、參考文獻……………………………………………………………89
dc.language.isozh-TW
dc.subject芒果zh_TW
dc.subject果膠zh_TW
dc.subject均質zh_TW
dc.subject粒徑zh_TW
dc.subject熱處理zh_TW
dc.subjectMangoen
dc.subjectThermal treatmenten
dc.subjectHomogenizationen
dc.subjectParticle sizeen
dc.subjectSoluble pectinen
dc.title芒果汁飲料熱處理後果汁分層現象之理化特性zh_TW
dc.titlePhysico-chemical Properties of Solid Sedimentation in Mango(Mangifera indica L.) Juice Drink after Thermal Treatmenten
dc.typeThesis
dc.date.schoolyear93-1
dc.description.degree碩士
dc.contributor.oralexamcommittee石正中,許輔
dc.subject.keyword果膠,均質,粒徑,熱處理,芒果,zh_TW
dc.subject.keywordParticle size,Soluble pectin,Mango,Homogenization,Thermal treatment,en
dc.relation.page96
dc.rights.note有償授權
dc.date.accepted2005-01-31
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept園藝學研究所zh_TW
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
960.19 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved