Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3907
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張文亮
dc.contributor.authorJin-Cheng Yangen
dc.contributor.author楊晉成zh_TW
dc.date.accessioned2021-05-13T08:38:21Z-
dc.date.available2016-07-25
dc.date.available2021-05-13T08:38:21Z-
dc.date.copyright2016-07-25
dc.date.issued2016
dc.date.submitted2016-07-11
dc.identifier.citation1. 王鐘和,林毓雯,黃維廷,江志峰,丘麗蓉。2002。綠肥作物在有機栽培之應用技術。作物有機栽培: 141-150。
2. 郭魁士。1986。土壤學。中國書局。
3. 蔣慕琰、徐玲明、袁秋英、陳永富、蔣永正。2003。台灣外來植物之危害與生態。小花蔓澤蘭危害與管理研討會專刊,97-109 頁。
4. 楊純明。2014。從有機農業,有機農業雜草管理至新農業價值鏈: 再創臺灣農業發展的新契機。作物,環境與生物資訊,11 (2),105-112。
5. 蕭政弘。2006。旱田雜草綜合管理。中華民國雜草學會會刊,27(1),13-20。
6. Bonachela, S., 1996. Root growth of triticale and barley grown for grain or for forage-plus-grain in a Mediterranean climate. Plant and Soil, 183(2), 239–251.
7.Chapin, F. S., 1980. Nutrient Allocation and Responses to Defoliation in Tundra Plants. Arctic and Alpine Research, 12(4), 553–563.
8. Chen, Z.S., Hseu, Z.Y., 1997. Total organic carbon pool in soils of Taiwan. Proceedings of the National Science Council. Part B: Life Sciences. Vol.21, No.3. pp.120-127. ROC.
9. Chen, J. H., H. F. Tsai and Y. W. Lin, 2004. Evaluation of the suitability of three analysis methods for determining organic matter contents in fertilizers. Taiwanese J. Agric. Chem. Food Sci. 42:116-124.
10. Coughenour, M. B., Detling, J. K., I. E. Bamberg, & Mugambi, M. M., 1990. Production and Nitrogen Responses of the African Dwarf Shrub Indigofera spinosa to Defoliation and Water Limitation. Oecologia, 83(4), 546–552.
11. Daehler, C. C, 2003. Performance comparison of co-occurring native and alien invasive plants: Implication for conservation and restoration. Annu. Rev. Ecol. Evol. Syst. 34: 183-211.
12. Fagbenro, J. A. and B.Oyeleye,1999.“Relationships between four methods of organic carbon determination in leaves of nitrogen-fixing trees and lignite-based organic fertilizers,” Communications in Soil Science and Plant Analysis, 30(17) : 2345-2362 
13. Grotkopp E, Rejmánek M, Rost TL , 2002 Toward a causal explanation of plant invasiveness: seedling growth and lifehistory strategies of 29 pine (Pinus) species. Am Nat 159:396– 419.
14. Hadač, E. and Věra Hadačová.,1969. Notes on the Ecology and Distribution of Bidens pilosa L. in Cuba. Folia Geobotanica & Phytotaxonomica, 4(2), 165–173.
15. Hou, C. J., Y. S. Yang and S. M. Wang, 2000. Seed size and germination character of Bidens pilosa and Bidens pilosa L. var. radiata Sch. at different days after flowering. Weed Sci. Bull. 20: 61–72.
16. Hsu, H-M, 2006. Implications of the invasiveness of Bidens pilosa L. var. radiata Sch.Bip. by studying its superiority over Bidens bipinnata L. Master thesis, National Taiwan University, Taipei, Taiwan.
17. Hsu, H.M. and W.Y. Kao, 2014. Vegetative and reproductive growth of an invasive weed Bidens pilosa L. var. radiata and its noninvasive congener Bidens bipinnata in Taiwan. Taiwania 59: 119–126.
18. Huang, H-L, 2008. A comparison of Bidens pilosa populations at two altitudes in Taiwan. Master thesis, National Taiwan University, Taipei, Taiwan.
19. Huang, H. L., Huang, Y. L., Wu, T. C., & Kao, W. Y., 2015. Phenotypic Variation and Germination Behavior between Two Altitudinal Populations of Two Varieties of Bidens pilosa in Taiwan. Taiwania, 60(4), 194-202.
20. Huang, Y.-L., S.-J. Chen and W.-Y. Kao, 2012. Floral biology of Bidens pilosa var. radiata, an invasive plant in Taiwan. Bot. Stud. 53: 501–507.
21. Huang, Y. L. and W.-Y. Kao, 2014. Different breeding systems of three varieties of Bidens pilosa in Taiwan. Weed Res. 54: 162–168.
22. Li, H., Gao, H., Wu, H., Li, W., Wang, X., & He, J., 2007. Effects of 15 years of conservation tillage on soil structure and productivity of wheat cultivation in northern China. Soil Research, 45(5), 344-350.
23. Majumder, B., Mandal, B., & Bandyopadhyay, P. K., 2008. Soil organic carbon pools and productivity in relation to nutrient management in a 20-year-old rice–berseem agroecosystem. Biology and Fertility of Soils, 44(3), 451-461.
24. McLauchlan, K. K., & Hobbie, S. E., 2004. Comparison of labile soil organic matter fractionation techniques. Soil Science Society of America Journal, 68(5), 1616-1625.
25. Norman, J. C, 1994. Response of Black jack (Bidens pilosa L.) to various horticultural practices. Advances in Horticultural Science, (4), 225-228.
26. Peng, C.-I., K.-F. Chung and H.-L. Li, 1998. Compositae. In: Huang, T.-C. and Editorial Committee of the Flora of Taiwan. (eds.), Flora of Taiwan Vol. 4. 2nd ed. Editorial Committee of the Flora of Taiwan, Department of Botany, National Taiwan University, Taipei, Taiwan. pp. 868-870.
27. Ruess, R. W., 1984. Nutrient Movement and Grazing: Experimental Effects of Clipping and Nitrogen Source on Nutrient Uptake in Kyllinga nervosa. Oikos, 43(2), 183–188.
28. Ruess, R., 1988. The Interaction of Defoliation and Nutrient Uptake in Sporobolus kentrophyllus, a Short-Grass Species from the Serengeti Plains. Oecologia, 77(4), 550-556.
29. Schnitzer, M, 1991. Soil organic matter-The next 75 years. Soil Science, 151(1),41-58. 30. Shahzad, T., Chenu, C., Repinçay, C., Mougin, C., Ollier, J. L., & Fontaine, S, 2012. Plant clipping decelerates the mineralization of recalcitrant soil organic matter under multiple grassland species. Soil Biology and Biochemistry, 51, 73-80.
30. Smit, A.L., Bengough, A.G., Engels, C., Noordwijk, M. van, Pellerin, S., Geijn, S.C. van de (Eds.), 2000. Root Methods, Springer-Verlag Berlin Heidelberg.
31. Wild, H., 1974. Arsenic tolerant plant species established on arsenical mine dumps in rhodesia. Kirkia, 9(2), 265–278.
32. Wu, S.-H., C.-F. Hsieh, and M. Rejmanek, 2004. Catalogue of the naturalized flora of Taiwan. Taiwania 49:16-31.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3907-
dc.description.abstract大花咸豐草(Bidens pilosa L. var. radiata Sch. Bip.)是目前平地常見雜草,其多年生、四季均可開花和可進行營養繁殖等優勢,使其已被列入危害力最高的20種入侵植物之一。本研究探討刈割對大花咸豐草根、莖、葉生長的影響,來考量刈割下來的地上部回歸土壤對土壤肥力的貢獻。探討刈割對其不同深度根系生長和死亡的影響,來考量不同深度根系成為供應該深度土壤有機質的機會。探討野外大花咸豐草生長與土壤有機質的關係,來考量大花咸豐草生長對土壤有機質的供獻。
實驗分三個部分,第一部分透過盆栽實驗,用非成對t-test比較刈割組和控制組在根、莖、葉的生物量和有機質含量、葉面積、地上部的氮、磷、鉀濃度的差異,來分析刈割對大花咸豐草生長的影響。第二部分透過根系觀察箱,在刈割前後進行根系觀察,將根系分成活的根、死的根的總長在0~30cm、30~60cm、60~90cm土壤深度中,用Duncan’s test比較刈割前後和不同深度間的根系的差異。第三部分透過野外調查,用非成對t-test比較在海邊大花咸豐草和馬鞍藤(Ipomoea pes-caprae)生長區域的土壤特性-有機質含量、酸鹼值、導電度、現地體積含水量、假比重。並使用線性複迴歸分析大花咸豐草的株數和土壤參數,以探討各項土壤參數與大花咸豐草的關係。
研究結果發現,刈割組和控制組相比,莖比例極顯著降低、葉比例顯著增加、葉面積沒有顯著差異、莖有機質含量顯著降低,推論刈割後大花咸豐草的再生傾向於葉部生長,大量累積葉面積,以獲取更多光源。刈割後大花咸豐草再生的莖和葉擁有較高氮、磷、鉀濃度,表示刈割後再生的地上部營養含量較高。由根系觀察箱發現,刈割後到刈割後第14天,在3個土壤深度中的根系仍持續生長,表示能繼續成為供應這3個土壤深度中有機質的來源。刈割後0~30cm和30~60cm土壤深度中的死亡根長顯著增加,表示刈割後死亡的根系,即可成為該深度土壤有機質的來源,增加該深度土壤有機質。刈割前後大花咸豐草在表層(0~30cm)均擁有最多根長。野外調查發現,大花咸豐草生長區域和馬鞍藤生長區域相比,有極顯著較高的土壤有機質含量,推測大花咸豐草在增加土壤有機質含量上和馬鞍藤相比,有較佳的表現。由線性複迴歸分析發現,土壤有機質含量和大花咸豐草的株數,有顯著正相關。藉此推測,大花咸豐草生長的株數增加,對於土壤有機質的增加,有顯著相關。
zh_TW
dc.description.abstractBidens pilosa L. var. radiata Sch. Bip. is a common weed in the low altitude area in Taiwan. Its advantages on perennial life cycle, flowering in all seasons and vegetative reproductivity make it is listed as one of the most twenty noxious invasive plants in Taiwan. This study works on the influence of clipping on its growth of vegetative organs to consider the the contribution to soil fertility of by the return of clipped shoot to the soil. We study on the influence of clipping on the root growth and death in different depth to consider the possibility of providing soil organic matters through the management of clipping B. pilosa var. radiata. And we also study on the relationship between wild B. pilosa var. radiata growth and the soil organic matters to estimate its contribution to soil organic matters.
There are three experiments. The first experiment is a pot-culture experiment. To analyze the influence to B. pilosa var. radiata, we compare the biomass in leaves, roots and stems and the difference in organic matters, leaf area and Nitrogen, Phosphates, Potassium concentrations between the control and the clipping treatment with unpaired t-test. In the second experiment, we plant the B. pilosa var. radiata in the rhizotrons and observe the root length. We recorded the full root length, dead and alive separately, in the depth of 0-30 cm, 30-60 cm and 60-90 cm, and compare the difference between the lengths before and after clipping with Duncan’s test. The third experiment, through the field research, compares the soil quality, organic matters, pH value, conductivity, on-site volune wetness and bulk density, of living regions between the B. pilosa var. radiata and Ipomoea pes-caprae. The multiple regression analysis of the numbers of B. pilosa var. radiata and the soil parameters were also done to study on the relationship between soil parameters and B. pilosa var. radiata.
The results show that, compared to control, the cliping treated plants have a very significant decrease in the porpotion of stem and a significantly higher leaf porpotion but having no differences in leaf area. This may resulted from its tendency to increasing leaf area by leaf growth in order to harvest more light energy. The clipped stem and leaf of B.pilosa var. radita have a higher Nitrogen , Phosphate and Potassium concentration, indicates that the clipped B. pilosa var. radiata has a higher shoot nutrient. From observing the rhizotron we noticed that, in the 14 days after clipping, the root systems in three depths remained growing, it means that it can continues to provide organic matters in the three soil depth. The dead root length in 0-30 cm and 30-60 cm increased significantly, it means that the dead root systems can be the source of the soil depth, increasing its soil organic matters. In both before and after clipping, B. pilosa var. radiata have most of the root length in 0-30 cm. Through the field research, compared to the living region of Ipomoea pes-caprae, the living region of the B. pilosa var. radiata has a very significantly higher soil organic matters. We can conclude that B. pilosa var. radiata has a better performance on increasing soil organic matters than Ipomoea pes-caprae. The multiple regression analysis shows a significant positive correlation between the number of B. pilosa var. radiata and the soil organic matters. It can be concluded that the more B. pilosa var. radiata plants growing has a significant correlation with higher increase of soil organic matters.
en
dc.description.provenanceMade available in DSpace on 2021-05-13T08:38:21Z (GMT). No. of bitstreams: 1
ntu-105-R03622026-1.pdf: 5400721 bytes, checksum: 33fd3cb3ed96788832e9b2696f558399 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents中文摘要………………………………………………………..……………….……….….………i
英文摘要..………………………………………………………….……………….……….iii
目錄………………………….……………………………………………..……....…………v
圖目錄………………………..…………………………………………………….…...………….vi
表目錄……………………..………………………………….………………………….…………..vii
第一章 諸論…..………………..………………………….….………………………………….. 1
1.1 前言與研究動機……..…………………………..………………………….1
1.2 文獻回顧…………......………………………..……………………………….3
1.3 研究目的………......………………………..………………………………….8
第二章 材料與方法……………………………………….…………………….......………9
2.1 溫室盆栽實驗…………………………..………...…………….…….…...9
2.2 溫室根系觀察箱實驗……………………………………….…………….14
2.3 野外調查………………...……………………………………………………...17
2.4 分析方法……………...………………………………….........................20
第三章 結果與討論……………………………………………………….........................21
3.1 刈割對大花咸豐草生長的影響…….……………...………………..21
3.2 刈割對大花咸豐草根系的影響……………………………………...31
3.3 野外調查………………….……………………………………………………..40
第四章 結論與建議………………………………………………………………………………47
參考文獻……………………………………….…………………………………………………..….48
附錄一 大花咸豐草刈割組和控制組養分分析結果….………………..……...52
dc.language.isozh-TW
dc.title刈割大花咸豐草的再生性在土壤管理之應用zh_TW
dc.titleClipping of Bidens pilosa L. var. radiata Sch. Bip.
Effect on Compensatory Growth for Soil Management
en
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張尊國,尤少彬,廖少威
dc.subject.keyword刈割,大花咸豐草,土壤有機質,根系觀察箱,根長,zh_TW
dc.subject.keywordClipping,Bidens pilosa L. var. radiata Sch. Bip.,soil organic matters,rhizotron,root length,en
dc.relation.page52
dc.identifier.doi10.6342/NTU201600765
dc.rights.note同意授權(全球公開)
dc.date.accepted2016-07-11
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf5.27 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved