Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39058
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王大銘
dc.contributor.authorMing-Hua Hoen
dc.contributor.author何明樺zh_TW
dc.date.accessioned2021-06-13T16:59:45Z-
dc.date.available2010-02-04
dc.date.copyright2005-02-04
dc.date.issued2005
dc.date.submitted2005-02-03
dc.identifier.citationReferences
Abedin M, Tintut Y, Demer LL, Vascular Calcification Mechanisms and Clinical Ramifications, Arterioscler Thromb Vasc Biol 2004; 24: 1161-1170
Akhouayri O, Proust MHL, Raeener A, Laroche N, Augusseau AC, Alexandre C, Vico L, Effects of static or dynamic mechanical stresses on osteoblast phenotype expression in three-dimensional contractile collagen gels. J Cellular Biochem 1999; 76: 217-230
Agrawal CW, Ray RB, Biodegradable polymeric scaffolds for musculoskeletal tissue engineering. J Biomed Mater Res 2001; 55: 141-150
Albelda SM, Buck CA, Integrins and other cell adhesion molecules, FASEB J 1990; 4: 2868-2880
Allcock HR, Pucher SR, Scopelianos AG, Synthesis of poly (organophosphazenes) with glycolic acid ester and lactic-acid ester side-groups - prototypes for new biodegradable polymers, Macromolecules 1994; 27: 1-4
American Liver Foundation, Vital statistics of the United States, vol. 2, part A, 1998 New Jersey
Amiji MM, Surface modification of chitosan membranes by complexation-interpenetration of anionic polysaccharides for improved blood compatibility in hemodialysis. J. Biomat. Sci. Polym. Ed. 1996; 8: 281-298
Amstein CF, Hartman PA, Adaptation of plastic surfaces for tissue culture by glow discharge. J Clin Microbiol 1975; 2: 46-54
Anderson JM, Langone JJ, Issues and perspectives on the biocompatibility and immunotoxicity evaluation of implanted controlled release system. J. Controlled Release 1999; 57: 107-113
Anderson JM, Inflammatory Response to Implants. ASAIO Journal 1998; 34: 101-107
Andrew TA, Flanagan JP, Gerundini M and Bombelli R, Clin. Orthop. 1986; 206, 127
Arceo N, Sauk JJ, Moehring J, Foster RA, Somerman MJ, Human periodontal cells initiate mineral-like nodules in vitro, J. Periodontal. 1991; 62: 499– 503
Atala A and Mooney DJ, Synthetic Biodegradable Polymer Scaffolds, 1997; Birkhauser, Boston
Babensee JE, Host response to tissue engineering devices. Adv. Drug Delivery Rev. 1998; 33: 111-139
Bacakova L, Filova E, Rypacek F, Svorcik V, Stary V, Cell adhesion on artificial materials for tissue engineering, Physiol Res. 2004; Suppl.1: S35-S45
Bacakova L, Lapcikova M, Kubies D, Rypacek F, Adhesion and growth of rat aortic smooth muscle cells on lactide-based polymers, Adv Exp Med Biol 2003; 534: 179-89
Barrera DA, Zyleatra E, Lansbury PT, Langer R, Synthesis and RGD peptide modification of a new biodegradable polymer- poly (lactic acid-co-lysine) J Am Chem Soc 1993; 115: 11010-11011
Bearinger JP, Castner DG, Healy KE, Biomolecular modification of p(AAm-co-EG/AA) IPNs supports osteoblast adhesion and phenotypic expression, J. Biomater. Sci. Polym. Ed. 1998; 9: 629-652
Beertsen W, Everts V, Junctions between fibroblasts in mouse periodontal ligament. J. Perio. Res. 1980; 16: 524–541
Bellows CG, Aubin JE, Heersche JNM, Antosz ME, Mineralized bone nodules formed in vitro from enzymatically released rat calvaria cell populations. Calcif Tissue Int 1986; 38:143-154
Bianco P, Silvestrini G, Termine JD, Bonucci E, Immunohistochemical localization of osteonectin in developing human and calf bone using monoclonal antibodies. Calcif Tissue Int 1988; 43:155-161
Bianco P, Fisher LW, Young MF, Terminw JD, Robey PG, Expression of bone sialoprotein (BSP) in developing human tissue, Calcif. Tisue Int. 1991; 49: 421-426
Borkenhagen M, Stoll RC, Neuenschwander P, Suter UW, Aebischer P. Biomater 1998; 19: 2155-2165
Boskey AL, Non-collagenous matrix proteins and their role in mineralization. Bone Miner 1989; 6:111-123
Boss JH, Biocompatibility: Review of the Concept and Its Relevance to Clinical Practice. Biomaterials and Bioengineering Handbook, edited by Wise DL et al, 2000, Marcel Dekker, New York
Bossi M, Hoylaerts MF, Millan JL, Modifications in a flexible surface loop modulate the lysozyme-specific properties of mammalian alkaline phosphatases. Journal of Biological Chemistry 1993; 264, 25409-25416.
Bostman OM, Osteolytic changes accompanying degradation of absorbable fracture fixation, Bone Joint Surg A 1991; 73: 679-682
Bostman OM, Absorbable Absorbable implants for the fixation of fractures, Bone Joint Surg A 1991, 73: 148-153
Bronckers AL, Gay JJ, Gay S, Finkelman RD, Butler WT, Developmental appearance of Gla proteins (osteocalcin) and alkaline phosphatase in tooth germs and bones of the rat. Bone and Mineral 1987; 2, 361-373.
Burdick JA, Anseth KS, Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering. Biomaterials 2002; 23: 4315-4323
Bumgardner JD, Wiser R, Gerard PD, Bergin P, Chestnutt B, Marini M, Ramsey V, Elder SH, Gilbert JA, Chitosan: potential use as a bioactive coating for orthopaedic and craniofacial/dental implants. J. Biomat. Sci.-Polym. E. 2003; 14: 423-438
Cai Q, Yang JA, Bei JZ, Wang SG, A novel porous cells scaffold made of polylactide-dextran blend by combining phase-separation and particle-leaching techniques. Biomaterials, 2002; 23: 4483-4492
Cao Y, Vancanti JP, Paige KT, Upton J, Vacanti CA, Transplantation of chondrocytes utilizing a polymer-cell construct to produce tissue-engineering cartilage in the shape of a human ear. Plast Reconstr Surg 1997; 100: 297-302
Cardin AD, Weintraub HJR, Molecular modeling of protein-glycosaminoglycan interactions, Arteriosclerosis 1989; 9: 21-32
Chan ECY, Ho PC, Preparation and characterization of immunogens for antibody production against methanephrine and normetanephrine. J. Immunol. Meth. 2002; 266: 143-154
Chandy T, Sharma CP, Effect of liposome albumin coatings on ferric ion retention and release from chitosan beads, Biomaterials 1996; 17: 61-66
Chang AS, Yannas IV, Krarup C, Sethi R, Noregaard TV and Zervas NT, Polymeric templates for peripheral-nerve regeneration - electrophysiological study of functional recovery. Abstracts of Papers of the American Chemical Society 1988; 196: 193-194
Chen G, Ushida T, Tateishi T, A biodegradable hybrid sponge nested with collagen microsponges. J. Biomed. Mater. Res. 2000; 51: 273-279
Chen G, Ushida T, Tateishi T, Preparation of poly (L-latide) and poly (D, L-lactic-co-glycolic acid) by use of ice microparticulates. Biomaterials 2001; 22: 2563-2567
Chen SC, Mullon C, Kahaku E, Watanabe F, Middleton Y, Arkadopoulos N, Demetriou AA. Bioartificial organs: Science, medicine, and technology. Ann NY Acad Sci 1997; 831: 350-360
Cheng ZY, Teoh SH, Surface modification of ultra thin poly (epsilon-caprolactone) films using acrylic acid and collagen. Biomaterials 2004; 25: 1991-2001
Chien HH, Lin WL, Cho MI, Interleukin-1#—Induced Release of Matrix Proteins into Culture Media Causes Inhibition of Mineralization of Nodules Formed by Periodontal Ligament Cells In Vitro, Calcif. Tissue Int. 1999; 64: 402-413.
Cho MI, Matsuda N, Lin WL, Mosher A, Ramakrishnan, PR, Calcif. Tissue Int. 1992; 50: 459-467.
Chuong R, Piper MA, Boland TJ, Recurrent giant cell reaction to residual proplast in the temporomandibular joint. Oral Medicine, Oral Pathology 1993; 76: 16-19
Cima LG, Vacanti JP, Vacanti C, Ingber D, Mooney D, Langer R, Tissue engineering by cell transplantation using degradable polymer substrates. J Biomech Eng 1991; 113: 143-151
Cui JF, Yin YJ, He SL, Yao KD, Biodegradable polymeric scaffolds for bone tissue engineering, Prog. Chem. 2004; 16: 299-307
Curtis AS, Forrester JV, McInnes C, Lawrie F, Adhesion of cells to polystyrene surface. J. Cell. Boil. 1983; 97: 1500-1506
Curtis AS, McMurray H, Conditions for fibroblast adhesion without fibronectin. J Cell Sci, 1986; 86: 25-33
Cutright DE, Hunsuck EE, Tissue reaction to the biodegradable polylactic acid suture, Oral Surgery 1971; 31: 134-139
Dalton BA, McFarland CD, Underwood PA, Steele JG, Role of the heparin binding domain of fibronectin in attachment and spreading of human bone-derived cells J. Cell Sci. 1995; 108: 2083-2092
Damink LHHO, Dijkstra PJ, Luyn MJAV, Wachem PBV, Nieuwenhuis P, Feijen J, Cross-linking of dermal sheep collagen using a water-soluble carbodiimide. Biomaterials 1996; 17: 765-773
Daniels AU, Andriano KP, Smutz WP, Chang MKO, Heller J, Evalution of absorbable poly(ortho ester) far use in surgical implants, J. Appl. Biomater. 1994; 5: 51-64
Das M, Dempsey EC, Reeves JT, Stenmark KR, Selective expansion of fibroblast subpopulations from pulmonary artery adventitia response to hypoxia, Am J Physiol Cell Mol Physiol 2002; 282: 976-986
Dee KC, Andersen TT, Bizios R, Design and function of novel osteoblast-adhesive peptides for chemical modification of biomaterials, J. Biomed. Mater. Res. 1998; 40: 3712-377
Delcommenne M, Streuli CH, Control of integrin expression by extracellular matrix, J. Biol. Chem. 1995; 270: 26794-26801
Dettin M, Conconi MT, Gambaretto R, Pasquato A, Folin M, Bello CD, Parnigotto PP, Novel osteoblast-adhesive peptides for dental/orthopedic biomaterials, J. Biomed. Mater. Res. 2002; 60: 466-471
Domb AJ, Gallardo CF, Langer R, Polyanhydrides .3. Polyanhydrides based on aliphatic aromatic diacids, Macromolecules 1989; 22: 3200-3204
Drumheller PD, Elbert DE, Hubbell JA, Multifunctional poly(ethylene glycol) semi-interpenetarting polymer networks as highly selective adhesive substrates for bioadhesive peptide grafting. Biotech Bioeng 1993; 43: 772-780
Drumheller PD, Hubbell JA, Polymer networks with grafted cell adhesion peptides for highly biospecific cell adhesive substrate. Analyt Biochem 1994; 222: 380-388
Dubois PH, Jacobs C, Jérôme R and Teyssié, Macromolecular engineering of polylactone and polylactide .4 mechanism and kinetics of lactide homopolymerization by aluminum isopropoxide, Macromolecules 1991; 24: 2266-2270
Ecarot-Charrier B, Glorieux FH, van der Rest M, Pereira G, Osteoblast isolated from mouse calvaria initiate matrix mineralization in culture. J Cell Biol 1983; 96:639-643
Elbert DL and Hubbell JA, Surface treatments of polymers for biocompatibility, Annu. Rev. Mater. Sci. 1996; 26: 365-394
Ellis DL, Yannas IV, Recent advances in tissue synthesis in vivo by use of collagen-glycosaminoglycan copolymers, Biomaterials, 1996; 17: 291-299
Fang N, Chan V, Mao HQ, Leong KW, Interactions of phospholipid bilayer with chitosan: effect of molecular weight and pH. Biomacromolecules 2001; 2: 1161-1168
Filmon R, Basle MF, Atmani H, Chappard D, Adherence of osteoblast-like cells on calcospherites developed on a biomaterial combining poly(2-hydroxyethyl) methacrylate and alkaline phosphatase. Bone 2002; 30: 152-158
Filmon R, Grizon F, Baslé MF, Chappard, Effects of negatively charged groups (carboxymethyl) on the calcification of poly (2-hydroxyethyl methacrylate). Biomaterials. 2002; 23: 3053-3059
Folkman J and Haudenshild C. Angiogenesis in vitro, Nature, 1980; 288: 551-556
Frazza EJ, Schmitt EE, A new absorbable suture. J Biomed Mater Res Symp 1971; 1: 43-58
Freed LE, Marquis JC, Nohria A, Emmanual J, Mikos AC, Langer R, Neocartilage formation in vitro and in vivo using cells celtured on synthetic biodegradable polymers. J. Biomed. Mater. Res. 1993; 27: 11-23
Fries KM, Blieden T, Looney RJ, Sempowski GD, Silvera MR, Willis R, Phipps RP, Evidence of fibroblast heterogeneity and the role of fibroblast subpopulations in fibrosis, Clin. Immunol. Immunopathol. 1994; 72: 283-292.
Galante JO, Jacobs J, Clinical-performances of ingrowth surfaces, Clin Orthop Relat Res, 1992; 276: 41-49
Galban CJ, Locke BR, Analysis of cell growth kinetics and substrate diffusion in a polymer scaffold, Biotechnol Bioeng. 1999; 65:121-32
Ganss B, Kim RH, Sodek J, Bone sialoprotein. Crit. Revs. Oral. Biol. Med. 1999; 10: 79–98
Garrett S, Periodontal regeneration around natural teeth. Ann Periodontol 1996; 1: 621-666.
Gazdag AR, Lane JM, Glaser D, Forster RA, Alternatives to autogenous bone graft: Efficacy and indications. J Am Acad Orthop Surg 1995; 3: 1-8
Gao JM, Niklason L, Langer R, Surface hydrolysis of poly(glycolic acid) meshes increases the seeding density of vascular smooth muscle cells, J Biomed Mater Res. 1998; 42: 417-424
Gerstenfeld LC, Chipman SD, Glowacki J, Lian JB, Expression of differentiated function by mineralizing cultures of chicken osteoblasts. Dev Biol 1987; 122: 49-60
Gerstenfeld LC, Chipman SD, Kelly CM, Hodgens KJ, Lee DD, Landis WJ, Collagen expression illustrated assembly and mineralization in cultures of chicken calvaria osteoblasts. J Cell Biol 1988; 106: 979-989
Giannopoulou C, Cimasoni G, Functional characteristics of gingival and periodontal ligament fibroblasts, J. Dent. Res. 1996; 75: 898–902
Gilding DK and Reed AM, Biodegradable polymers for use in surgery – Poly (glycolic) / poly (lactic acid) homo and copolymers. Polymer 1979; 20: 1459-1464
Gogolewski S, Jvanovic M, Perren SM, Dillon JG, Highes MK, Tissue response and in vivo degradation of selected polyhydroxyacidsa: polylactides (PLA), poly (3-hydroxybutyrate) (PHB), and poly (3-hydroxybutyrate-co-3- hydroxyvalerate) (PHB/VA). J. Biomed. Mater. Res. 1993; 27: 1135-1148
Gorski JP, Acidic phosphoproteins from bone matrix: a structural rationalization of their role in mineralizeation. Calcif Tissue Int 1992; 50: 391-396
Gotoh Y, Niimi S, Hayakawa T, Miyashita T, Preparation of lactose-silk fibroin conjugates and their application as a scaffold for hepatocyte attachment. Biomaterials, 2004; 25: 1131-1140
Gray WG, A derivation of the equations for multiphase transport. Chem Eng Sci, 1975; 30: 229-233
Grifffith LG, Polymeric biomaterials. Acta. Mater. 48: 263-277
Grigoriadis AE, Petkovich PM, Ber R, Aubin JE, Heersche JN, Subclone heterogeneity in a clonally-derived osteoblast-like cell line, Bone 1985; 6: 249-56
Grinnell F, Feld MK, Adsorption characteristics of plasma fibronectinin relationship to biological activity. J Biomed Mater Res. 1981; 15: 363–381
Grinnell F, Feld MK. Fibronectin adsorption on hydrophilic and hydrophobic surfaces detected by antibody binding and analyzed during cell adhesion in serum-containing medium. J Biol Chem. 1982; 257:4888–4893
Groski JP, Acidic phospfoproteins from bone matrix: a structural rationalization of their role in biomineralization. Calcified Tissue Inter 1992; 50: 391-396
Hahnel AC, Rappolee DA, Millan JL, Manes T, Ziomek CA, Theodosiou NG, Two alkaline phosphatase genes are expressed during early development in the mouse embryo. Development 1990; 110, 555-564.
Han MJ, Biodegradable membranes for the controlled release of progesterone. 1. Characterization of membrane morphologies coagulated from PLGA/Progesterone/DMF solutions. J. Appl. Polym. Sci. 2000; 75: 60-67
Harris LD, Baldwin DF, Mooney DJ, Open pore biodegradable matrices formed with gas foaming. J. Biomed. Mater. Res. 1998; 42: 396-402
Harris NL, Rattray KR, Tye CE, UnderhillL TM, Somerman MJ, D’errico JA, Chambers AF, Hunter GK, Goldberg HA, Functional Analysis of Bone Sialoprotein: Identification of the Hydroxyapatite-nucleating and Cell-binding Domains by Recombinant Peptide Expression and Site-directed Mutagenesis, Bone, 2000; 27: 795-802
Harving S, Soballe K, Bunger C, A method for bone-cement interface thermometry - an invitro comparison between low-temperature curing cement palavit and surgical simplex-p, Acta Orthop Scand. 1991; 62: 546-548
Hasenbein ME, Andersen TT, Bizios R, Micropatterned surfaces modified with select peptides promote exclusive interactions with osteoblasts, Biomaterials 2002; 23: 3937-42
Haverich A, Graf H, Stem cell transplantation and tissue engineering, 2002, Springer, New York
Hayashi T, Biodegradable polymers for biomedical uses, Prog. Polym. Sci. 1994; 19: 663-702
Heinze J, A space-maintaining resorbable membrane for guided tissue regeneration, Business Briefing: Global Surgery, 2004; 5: 1-4
Henke L, Piunno PAE, McClure AC, Krull UJ, Covalent immobilization of single-stranded DNA onto optical fibers using various linkers, Analyt. Chim. Acta 1997; 344: 201-213
Hesby RM, Haganman CR, Stanford CM, Effects of radiofrequency glow discharge on impression material surface wettability. J prosthet Dent 1997; 77: 414-422
Hirakawa K, Hirota S, Ikeda T, Yamaguchi A, Takemura T, Nagoshi J, Yoshiki S, Suda T, Kitamura Y, Nomura S, Localization of mRNA for bone matrix proteins during fracture healing as determined by in situ hybridization. J Bone Miner Res 1994; 9: 1551-1557
Ho MH, Kuo PY, Hsieh HJ, Hsien TY, Hou LT, Lai JY, Wang DM, Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods. Biomaterials 2004; 25: 129-138
Ho MH, Wang DM, Hsieh HJ, Liu HC, Hsien TZ, Lai JY, Hou LT, Preparation and characterization of RGD-immobilized chitosan scaffolds. Biomaterials 2005; 26: 3197-3206
Hou LT, Liu CM, Lei JY, Wong MY, Chen JK, Biological effects of cementum and bone extracts on human periodontal fibroblast. J Periodontol, 2000; 71:1100-1108
Hou LT, Tsai AYM, Liu CM, Feng F, Autologous transplantation of gingival fibroblast-like cells and a hydroxylapatite complex graft in the treatment of periodontal osseous defects: cell cultivation and long-term report of cases. Cell Transplant 2003; 12: 787-797
Hou LT and Yaeger JA, Cloning and characterization of human gingival and periodontal ligament fibroblast, J. Periodontol. 1993; 64: 1209–1218
Hu YH, Winn SR, Krajbich I, Hollinger JO, Porous polymer scaffolds surface-modified with arginine-glycine-aspartic acid enhance bone cell attachment and differentiation in vitro. J Biomed Mater Res A, 2003; 64A: 583-590
Humes HD, Buffington DA, Mackay SM, Funke AJ, Replacement of renal function in uremic animals with a tissue-engineered kidney, Nat Biotechnol 1999; 17: 451-455
Humphries MJ, The molecular basis and specificity of integrin-ligand interactions. J Cell Sci 1990; 97: 585-592
Hunter GK, Goldberg HA. Modulation of crystal formation by bone phosphoproteins: role of glutamic acid-rich sequences in the nucleation of hydroxyapatite by bone sialoprotein. Biochem J 1994; 302: 175-179
Huynh T, Abarham G, Murray J, Brockbank K, Hagen PO, Sullivan S, Remodeling of an acellular collagen graft into a physiologically responsive neovessel, Nat Biotechnol 1999; 284: 489-493
Ishijima M, Rittling SR, Yamashita T, Tsuji K, Kurosawa H, Nifuji A, Denhardt DT, Noda M, Enhancement of osteoclastic bone resorption and suppression of osteoblastic bone formation in response to reduced mechanical stress do not occur in the absence of osteopontin. J Exp Med 2001; 193: 399-404
Isobe M, Yamazaki Y, Oida S, Ishihara K, Nakabayashi N, Amagasa T, Bone morphogenetic protein encapsulated with a biodegradable and biocompatible polymer, Journal of biomedical material research, 1996; 32: 433-438
Jacobsen S, Degee PH, Fritz HG, Dubois PH, Jerome R, Polylactide (PLA) - A new way of production, Polym Eng Sci, 1999; 39: 1311-1319
Johnsen K, Kirkhorn S, Olafsen K, Redford K, Stori A, Modification of polyolefin surfaces by plasma-induced grafting, J Appl Polym Sci, 1996; 59: 1651-1657
Kamalia N, McCulloch CAG, Tenenbaum HC, Limeback H, Direct flow cytometric quantification of alkaline phosphatase activity in rat bone marrow stromal cells. J Histochem Cytochem 1992; 40: 1059-1065
Kaplan DL, Wiley BJ, Mayer JM, Arcidiacono S, Keith J, Lombardi SJ, Ball D and Allen AL, Biosynthetic polysaccharides. In “Biomedical Polymers” (S. Shalaby, ed.), 1994; pp. 189-212. Hanser Publishers, Munich and New York
Katz AR, Turner R, Evaluation of tensile and absorption properties of poly-glycolic acid sutures. Surg Gynecol Obstet, 1970; 131: 701-716
Khang G, Rhee JM, Shin P, Kim IY, Lee B, Lee SJ, Lee YM, Lee HB, Lee I, Preparation and characterization of small intestine submucosa powder impregnated poly(L-lactide) scaffolds: The application for tissue engineered bone and cartilage. Macromol Res, 2002; 10: 158-167
Khang G, Choee JH, Rhee JM, Lee HB, Interaction of different types of cells on physicochemically treated poly(L-lactide-co-glycolide) surfaces, J. Appl. Polym. Sci. 2002; 85: 1253-1262
Kim GY, Besner GE, Steffen CL, Mccarthy DW, Downing MT, Luquette MH, Abad MS, Brigstock DR, Purification of Heparin-Binding Epidermal Growth Factor-Like Growth Factor from Pig Uterine Luminal Flushings, and Its Production by Endometrial Tissues, Biol Reproduct 1995; 52, 561-571
Kouvroukoglou S, Dee KC, Bizios R, McIntire LV, Zygourakis K, Endothelial cell migration on surfaces modified with immobilized adhesive peptides. Biomaterials 2000; 21: 1725-1733
Kubota M, Chiba M, Obinata M, Ueda S, Mitani H, Establishment of Periodontal Ligament Cell Lines from Temperature-Sensitive Simian Virus 40 Large T-antigen Transgenic Rats, Cytotechnology, 2004, 44: 55-65
Kuru L, Parkar GS, Griffiths GS, Newman HN, and Olsen I, Flow cytometry analysis of gingival and periodontal ligament cells J Dent Res 1998; 77: 555–564
Kwong WH, Tam PPL, The pattern of alkaline phosphatase activity in the developing mouse spinal cord. J Embry Exp Morp 1984; 82, 241-251.
Lackler KP, Cochran DL, Hoang AM, Takacs V, Oates TW, Development of an in vitro wound healing model for periodontal cells, J. Periodontol. 2000; 71: 226–237
Langer R, Vacanti JP, Tissue engineering. Science, 260, 920-926 (1993)
Lanza R, Chick WL, Bioartificial organs: Science, medicine and technology. Ann NY Acad Sci 1997; 831: 323-331
Lee JK, Ha CS, Lee WK, Alkaline hydrolysis of modified poly (L-lactide) monolayers. Mat Sci Eng C-Bio S, 2004; 24: 23-25
Levenberg S, Golub JS, Amit M, Itskovitz-Eldor J, Langer, Endothelial cells derived from human embryonic stem cells, Develop Bio. 2002; 99: 4391-4396
Lim JY, Liu X, Vogler EA, Donahue HJ, Systematic variation in osteoblast adhesion and phenotype with substratum surface characteristics, J Biomed Mater Res 2004; 68: 504–512
Lomri A, Marie PJ, Tran PV, Hott M, Characterization of endosteal osteoblastic cells isolated from mouse caudal vertebrae. Bone 1988; 9: 165-175
Lucas-Clerc C, Massart C, Campion JP, Long-term culture of human pancreatic islets in an extracellular matrix: Morphological and Metabolic effects. Mol Cell Endocrinol 1993; 94: 9-20
Lucas PA, Laurencini C, Syftestad GT, Domb A, Goldberg VM, Caplan AI and Langer R, J Biomed Mater Res 1990; 24: 901
Ma J, Wang H, He B, Chen JT, A preliminary in vitro study on the fabrication and tissue engineering aoolications of a novel chitosan bilayer materials as a scaffold of human neofetal fibroblast. Biomaterials 2001; 22: 331-336
MacGregor GR, Zambrowicz BP, Soriano P, Tissue nonspecific alkaline phosphatase is expressed in both embryonic and extraembryonic lineage during mouse embryogenesis but is not required for migration of primordial germ cells. Development 1995; 121, 1487-1496.
Majeska RJ, Rodan SB, Rodan GA, Parathyoid hormone-responsive clonal cell lines from rat osteosarcoma. Endocrinology, 1980; 107: 1494-1503
Maniatopoulos C, Sodek J, Melcher AH, Bone formation in vitro by stromal cells obtained from marrow of young adult rats. Cell Tissue Res 1988; 254: 317-330
Mao JS, Cui YL, Wang XH, Sun Y, Yin YJ, Zhao HM, Yao KD, A preliminary study on chitosan and gelatin polyelectrolyte complex cytocompatibility by cell cycle and apoptosis analysis, Biomaterials 2004; 25: 3973-3981
Mao JS, Liu HF, Yin YJ, Yao KD, The properties of chitosan-gelatin membranes and scaffolds modified with hyaluronic acid by different methods, Biomaterials 2003; 24: 1621-1629
Maqut V, Jerome R, Design of macroporous biodegradable polymer scaffolds for cell transplantation. Mat Sci Forum 1997; 250: 15-42
Masi L, Brandi ML, Robey PG, Crescioli C, Calvo JC, Bernabei P, et al. Biosynthesis of bone sialoprotein by a human osteoclast-like cell line (FLG 29.1). J Bone Miner Res 1995; 10: 187-196
Massia SP, Hubbell JA, Covalent surface immobilization of Arg-Gly-Asp and Try-Ile-Gly-Ser-Arg containing peptides to obtain well defined cell-adhesive substrates. Analyt Biochem 1990; 187: 292-1100
Mark MP, Butler WT, Prince CW, Finkelman RD, Ruch JV, Developmental expression of 44-kDa bone phosphoprotein (osteopontin) and bone q-carboxyglutamic acid (Gla)-containing protein (osteonectin) in calcifying tissues of rat. Differentiation 1988; 37: 123-136
Massia SP, Hubbell JA, An RGD spacing of 440 nm is sufficient for integrin
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39058-
dc.description.abstract本研究採用冷凍交換法 (freeze-extraction) 與冷凍膠化法(freeze-gelation)來製備具有高孔隙度的組織工程基材。以冷凍法製備組織工程基材時,孔洞結構在高分子溶液冷凍後即出現, 但須採用適當的方法來避免多孔結構在溶劑移除的階段中被破壞,方能保留此結構於基材中,本研究所使用的方式是在高分子溶液的冷凍環境下,溶劑與非溶劑進行交換(extraction)或是使高分子產生膠化(gelation),於是,基材便可以在室溫下進行乾燥而不至於使多孔結構塌陷。 與傳統用的冷凍乾燥法相比較,本研究所開發的方法在能源與時間上的花費較經濟、較不易有溶劑殘留、也較有利於大規模生產,此外,高沸點溶劑也可應用這個方法製備多孔基材。在本研究中,幾丁聚醣 (chitosan)、海藻酸鈉 (alginate)、聚乳酸 (PLA) 和聚乳酸-甘醇酸 (PLGA) 皆可藉由冷凍交換法或冷凍膠化法,成功地製備出可用於組織工程的多孔基材。
經由醯胺鍵形成反應,可將數種胺基酸序列 (RGDS、KRSR和FHRRIKA) 接枝於幾丁聚醣基材上。 研究中以傅立葉轉換紅外線光譜 (FTIR) 來確定接枝程序的完成,並以胺基酸分析儀得知所接上的胺基酸濃度約為10-12。細胞對改質後幾丁聚醣的貼附性較未改質前有顯著提升,將RGDS接枝的幾丁聚醣基材用來培養老鼠骨瘤細胞 (ROS,rat osteosarcoma)時,基材中的細胞密度較未改質的幾丁聚醣基材為高,也由於細胞數量的提升, RGDS接枝的幾丁聚醣基材中,細胞更容易發展出骨化的組織。KRSR與FHRRIKA的接枝則使幾丁聚醣基材對類似骨母細胞的細胞 (osteoblastic cell) 具有專一性,對老鼠骨瘤細胞的貼附具有促進的效果,但對人類皮膚纖維母細胞 (human fetal skin fibroblast) 則是無效的;其對牙周纖維母細胞 (periodontal fibroblast),貼附之促進效果雖然並不及RGDS接枝基材。 但培養於KRSR與FHRRIKA改質基材上的牙周纖維母細胞,卻比培養在RGDS改質基材上的牙周纖維母細胞,在成骨作用的指標上有著更顯著的表現。上述結果顯示KRSR與FHRRIKA的接枝會使幾丁聚醣基材具有對骨類細胞的選擇性,更適於用來促進骨骼組織的再生。
由於聚乳酸 (PLLA) 缺乏可直接進行化學改質的官能基,故不易將氨基酸序列接枝於其上,本研究利用電漿將聚乳酸活化,再將胺基酸序列固定於聚乳酸基材上。研究中使用傅立葉轉換紅外線光譜與表面分析電子能譜儀 (ESCA) 來證實接枝反應的發生, 並以胺基酸分析儀得知所接上的胺基酸濃度在有效範圍內。在聚乳酸基材上接枝的胺基酸序列所產生之效用與前述幾丁聚醣基材相仿:RGDS的固定使聚乳酸基材與細胞間的親合性大幅增加,而KRSR與FHRRIKA的固定則使其具有對骨類細胞的專一性。
本研究也提出一數學模式,嘗試解釋老鼠骨瘤細胞在幾丁聚醣及聚乳酸基材中的貼附與生長情形。以此模式分析實驗結果,可推論出在幾丁聚醣基材中,RGDS接枝對於細胞在材料上貼附的促進性是改質基材具有較高細胞密度的主要原因,而細胞成長速度並未改變。在聚乳酸基材中,RGDS接枝則同時促進了細胞貼附與成長。此外,此模式可描述培養時間較長時,細胞密度趨於定值的趨勢,造成此現象的原因,可能是基材內空間的限制,或細胞阻擋孔洞造成養分供給不足。
zh_TW
dc.description.abstractFreeze-extraction and freeze-gelation methods are presented in this thesis which can be used to prepare highly porous scaffolds. The porous structure was generated after freeze of a polymer solution, following that either the solvent was extracted by a non-solvent or the polymer was gelled under the freezing condition; thus, the porous structure would not be destructed during the subsequent drying stage. Compared with the traditional freeze-drying method, the presented methods are time and energy saving, with less residual solvent, and easier to scale-up. Besides, by the methods presented, the limitation is lifted so only solvent with low boiling point can be used for scaffold preparation. With the freeze-extraction and freeze-gelation methods, porous PLLA, PLGA, chitosan and alginate scaffolds were successfully fabricated.
Chitosan scaffolds were modified with peptides, RGDS (Arg-Gly-Asp-Ser), KRSR (Lysine-Arginine-Serine-Arginine) and FHRRIKA (Phenylalanine- Histidine-Arginine-Arginine-Isoleucine-Lysine-Alanine), via an amide-bond forming reaction between amino groups in chitosan and carboxyl groups in peptides. Successful immobilization was verified with FTIR spectroscopy, and the immobilized amount was determined with an amino acid analyzer to be in the order. The RGDS immobilization can enhance the attachment of cells onto the chitosan, resulting in cells with higher density attached to the RGDS-modified scaffold than to the unmodified scaffold. Consequently, when being applied to culture of ROS (rat osteosarcoma cells), more cells were on the RGDS-modified scaffold than on the unmodified scaffold, which tended to form bone-like tissues. The immobilizations of KRSR and FHRRIKA made the chitosan scaffolds specific to osteoblastic cells, promoting attachment of ROS cells but ineffective on human fetal skin fibroblasts. For PF (periodontal fibroblast) cells, the graft of KRSR and FHRRIKA also increased the initial density of attached cells, although less effectively than the graft of RGDS did. However, the PF cells cultured on the KRSR and FHRRIKA immobilized chitosan expressed more significant markers in osteoconduction. The grafted KRSR and FHRRIKA might induce the attachment of the osteoblastic subgroup in the PF cells or make the non-osteoblastic subgroup in PF cells transform to osteoblastic cells. The results suggested that the immobilization of KRSR and FHRRIKA could make chitosan scaffolds osteoblastic cell specific and more suitable for regeneration of bones.
The peptides were also grafted on the PLLA scaffolds with the plasma grafting technique. The successful graft was confirmed with FTIR spectroscopy and ESCA, and the graft amount was determined with an amino acid analyzer. The grafted RGDS enhanced cell attachment and the grafted KRSR and FHRRIKA had specific effects on osteoblastic cells, just like what was observed for chitosan scaffolds.
In the last part, a mathematical model was proposed to describe the attachment and growth of ROS cells in scaffolds. For chitosan scaffolds, it revealed that the enhancement on the initial cell attachment by the grafted RGDS should be the major reason for the observed effect and the cell doubling time remains changeless with different modification. Besides, the model can well describe the occurrence of a plateau in cell density at long culture time, which might be caused by the space limitation in the scaffold. For PLLA scaffolds, the graft of RGDS can enhance not only the initial attached cell number but also the cell growth rate.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T16:59:45Z (GMT). No. of bitstreams: 1
ntu-94-F89524016-1.pdf: 2924825 bytes, checksum: af4f5ac9717c12ccd3c84e37da71b18d (MD5)
Previous issue date: 2005
en
dc.description.tableofcontentsCONTENTS
ABSTRACT I
ABSTRACT (in Chinese) V
ACKNOWLEDGEMENT (in Chinese) VII
CONTENTS IX
FUGURE LIST XV
TABLE LIST XXVII
EQUATION LIST XXIX
Chapter I Introduction 1
Chapter II Literature Survey 5
2.1 Tissue Engineering 5
2.1.1 The Role of Tissue Engineering 5
2.1.2 Triangle of Tissue Engineering 7
2.2 Scaffolds 10
2.2.1 Biocompatibility of Scaffolds 10
2.2.2 Biodegradable Polymer 12
2.2.3 Scaffold Preparation 20
2.2.4 Phase Separation 20
2.3 Signals 21
2.3.1 RGD 25
2.3.2 KRSR 27
2.3.3 FHRRIKA 28
2.4 Cells 29
2.4.1 Rat Osteosarcoma Cells (ROS 17/2.8 Cells) 29
2.4.2 Periodontal Fibroblast Cells (PF Cells) 29
2.5 Surface Modification of Scaffolds 30
2.6 Tissue Engineering for Bones 33
2.6.1 Bone Engineering 33
2.6.2 Bone Loss Caused by Periodontal Diseases 35
2.6.3 Biochemical Markers of Osteoconduction 36
Chapter III Materials and Experimental Procedures 41
3.1 Preparation of Scaffolds by Freeze-Gelation 41
3.1.1 Preparation of Chitosan Scaffolds 41
3.1.2 Preparation of Alginate Scaffolds 41
3.2 Preparation of Scaffolds by Freeze-Extraction 42
3.2.1 Preparation of PLLA Scaffolds 42
3.2.2 Preparation of PLGA Scaffolds 43
3.3 Freeze-Drying 43
3.4 Characterization of Scaffolds 44
3.4.1 Determination of the Porosity of Scaffolds 44
3.4.2 Pore Size Distribution 45
3.4.3 SEM Analysis 45
3.5 Preparation of Chitosan and PLLA Films 46
3.5.1 Preparation of Chitosan Films 46
3.5.2 Preparation of PLLA Films 46
3.6 Peptide Grafting 46
3.6.1 Peptide Grafting on Chitosan 46
3.6.2 Peptide Grafting on PLLA 47
3.7 Characterization of Peptide Grafted Scaffolds 47
3.7.1 FTIR-ATR Spectroscopy 47
3.7.2 Amino Acid Analysis 48
3.7.3 Electron Spectroscopy for Chemical Analysis (ESCA) 48
3.8 Cell Culture and In Vitro Mineralization 48
3.8.1 Cell Attachment to the Polymer Films 48
3.8.2 Cell Culture with Scaffolds 49
3.8.3 Determination of the Number of Cells Attached to Scaffolds 50
3.8.4 SEM Analysis for Samples with Cells 50
3.8.5 In Vitro Mineralization 51
3.8.6 ESCA for Samples with Cells 51
3.9 Histochemistry and Immunochemistry Staining 51
3.9.1 Frozen Section 51
3.9.2 ALPase Staining 52
3.9.3 OPN (Osteopontin) and BSP (Bone Sailoprotein) Staining 52
3.9.4 Von Kossa Staining 54
Chapter IV Preparation of Porous Scaffolds 57
4.1 Scaffolds Prepared by Freeze-Extraction and Freeze-Gelation Methods 59
4.2 Formation of Porous Structure 67
4.3 Advantages of Freeze-Extraction and Freeze-Gelation 69
Chapter V RGDS Immobilization on chitosan Scaffolds 73
5.1 Creation of Biomimetic Materials by Attaching Cell Adhesive Peptides 73
5.2 Immobilization of Peptides on Chitosan Scaffolds by Amide Bond Formation Reaction 75
5.3 Effect of RGD Immobilization on Cell Culture 81
5.4 The Mineralization Behavior of ROS Cells in RGDS Modified Chitosan Scaffolds 87
Chapter VI RGDS Immobilization on PLLA Scaffolds 93
6.1 Modification of PLA 93
6.2 Fabrication of Porous Scaffolds 94
6.3 Plasma Grafting of Peptides on PLLA 95
6.4 Effect of RGD Grafting on Cell Culture 100
6.5 Mineralization of Cultured ROS Cells 105
Chapter VII KRSR and FHRRIKA Immobilization on Scaffolds 109
7.1 Preparation of Functional Scaffolds 109
7.2 Characterization of KRSR and FHRRIKA Immobilized Porous Scaffolds 110
7.3 Effects of KRSR and FHRRIKA Immobilization on Cell Culture 114
7.4 Subpopulations of PF Cells in KRSR and FHRRIKA Immobilized Porous Scaffolds 132
7.5 Histochemistry and Immunochemistry Stainings on the PF Cells Cultured on the Peptide Grafted Films 137
7.6 Histochemistry and Immunochemistry Stainings on the PF Cells Cultured with the Peptide Grafted Scaffold 149
Chapter VIII Analysis of Cell Growth in Scaffolds 157
8.1 Development of the Mathematical Model 157
8.2 Verification and Application of the Mathematical Model 160
8.3 Analysis of the Growth of ROS Cells in PLLA Scaffolds 167
8.4 Mechanism of the Enhancement of Cell Density by Peptide Grafting 170
Chapter IX Conclusions and Recommendations
171
9.1 Conclusions 171
9.2 Recommendations 173
REFERENCE 177
APPENDIX 205
Appendix A Notations 205
Appendix B Calculations of the Surface Area in Scaffolds 210
Appendix C The efficiency of peptide grafting 211
AUTOBIOGRAPHY (in Chinese) XXXI
RESUME XXXIII
RESUME (in Chinese) XXXIX
dc.language.isozh-TW
dc.subject接枝zh_TW
dc.subject細胞專一性zh_TW
dc.subject生物基材zh_TW
dc.subject胜&#32957zh_TW
dc.subject骨再生zh_TW
dc.subjectscaffolden
dc.subjectpeptideen
dc.subjectgraften
dc.subjecttissue engineeringen
dc.subjectbone regenerationen
dc.subjectcell-specificen
dc.title藉由胜肽接枝製備具細胞專一性之骨再生基材zh_TW
dc.titlePreparation of Cell-Specific Scaffolds by Peptide-Grafting for Bone Regenerationen
dc.typeThesis
dc.date.schoolyear93-1
dc.description.degree博士
dc.contributor.coadvisor侯連團
dc.contributor.oralexamcommittee謝學真,鍾次文,阮若屈,孫一明,蔡偉博
dc.subject.keyword骨再生,接枝,細胞專一性,生物基材,胜&#32957,zh_TW
dc.subject.keywordpeptide,graft,tissue engineering,bone regeneration,cell-specific,scaffold,en
dc.relation.page203
dc.rights.note有償授權
dc.date.accepted2005-02-03
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
2.86 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved