請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39033完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 朱錦洲(Chin-Chou Chu) | |
| dc.contributor.author | Hui-Yu Chang | en |
| dc.contributor.author | 張惠裕 | zh_TW |
| dc.date.accessioned | 2021-06-13T16:58:28Z | - |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-04-02 | |
| dc.identifier.citation | [1]莊達仁編著,VLSI 製造技術,高立圖書有限公司。
[2]張志誠著,微機電技術,商周出版。 [3]李國賓,“下一波之生物晶片-微流體生醫晶片之應用及研發,” 科學發展月刊, 2002. [4]曾繁根, 柳克強, 黃海美, 錢景常, 潘力誠,“生醫檢測的微技術,”科學發展月刊, 371期, pp.67-73, 2003年11月. [5]陳淑慧, 林群哲, 宋旺洲, 林佾鴻, 戴德禮, 王蘭玉, 陳邦維, 張定宗, 楊孔嘉, 曾慶誠, 李國賓, 黃冠瑞, 廖寶琦, “電泳晶片於DNA分析上的應用,” 微系統科技協會季刊第五期, pp.23-34, August 2001. [6] C-M Ho, Y-C Tai, “Review: MEMS and its applications for flow control,” ASME J.Fliuds Eng., vol. 118, pp.437-447, September 1996. [7] C-M Ho, Y-C Tai, “Micro-electro-mechanics system (MEMS) and fluid flows,” Ann. Rev. Fluid Mechanics, 30, pp.579-612, 1998. [8] Thomas K. Jun and C-J Kim, “Valveless pumping using traversing vapor bubbles in microchannels,” Journal of Applied Physics, vol. 83, no. 11, June 1998. [9] Masao Washizu, “Electrostatic actuation of liquid droplet for microreactor application,” IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, vol. 34, no. 4, pp.732-737, July/August 1998. [10] Junghoon Lee and C-J Kim, “Liquid micromotor driven by continuous electrowetting,” in Proc. IEEE Micro Electro Mechanical Systems, pp.538-543, Jan. 1998. [11] Junghoon Lee and C-J Kim, “Surface-tension-driven microactuation based on continuous electrowetting,” J. Microelectromechanical Systems, vol.9, no. 2, pp.171-180, June 2000. [12] Junghoon Lee, Hyejin Moon, Jesse Fowler, C-J Kim, and Thomas Schoellhammer, “Addressable micro liquid handling by electric control of Surface tension,” in Proc. IEEE Micro Electro Mechanical Systems, pp.499-502, Jan. 2001. [13] P. Cousseau, R. Hirschi, B. Frehner, S. Gamper, D. Maillefer, “Improved micro-flow regulator for drug delivery systems,” in Proc. IEEE Micro Electro Mechanical Systems, pp.527-530, Jan. 2001. [14] P.F. Man, C.H. Mastrangelo, M.A. Burns, D.T. Burke, “Microfabricated capillarity-driven stop valve and sample injector,” in Proc. IEEE Micro Electro Mechanical Systems, pp.45-50, Jan. 1998. [15] F-G Tseng, C-J Kim, and C-M Ho, “A high-resolution high-frequency monolithic top-shooting microinjector free of satellite drops-part I: concept, design, and model,” J. Microelectromechanical Systems, vol. 11, no. 5, pp.427-436, October 2002. [16] F-G Tseng, C-J Kim, and C-M Ho, “A high-resolution high-frequency monolithic top-shooting microinjector free of satellite drops-part II: fabrication, implementation, and characterization,” J. Microelectromechanical Systems, vol. 11, no. 5, pp.437-447, October 2002. [17] Y. Hong, N. Ashgriz, J. Andrews, “Numerical simulation of growth and collapse of a bubble induced by a pulsed micro heater,” J. Microelectromechanical Systems, accepted for publication, 2004. [18] Jr-Hung Tsai and Liwei Lin, “A Thermal-Bubble-Actuated Micronozzle-Diffuser Pump,” J. Microelectromechanical Systems, vol. 11, no. 6, December 2002. [19] P. Deng, Y-K Lee, and Ping Cheng, “The growth and collapse of a micro-bubble under pulse heating,” International Journal of Heat and Mass Transfer 46, pp.4041-4050, 2003. [20] P. Deng, Y-K Lee, and Ping Cheng, “Micro bubble dynamics in DNA solutions,” J. Micromech. Microeng. 14, pp.693-701, 2004. [21] S-K Cho, Hyejin Moon, and C-J Kim, “Creating. Transporting, Cutting, and Merging Liquid Droplets by Electrowetting-Based Actuation for Digital Microfludic Circuits,” J. Microelectromechanical Systems, vol. 12, no. 1, pp.70-80, February 2003. [22] Christopher Earls Brennen, CAVITATION AND BUBBLE DYNAMICS, Oxford University Press, 1995. [23] Hong Xiao, Introduction to Semiconductor Manufacturing Technology, Prentice-Hall, 2001. [24]郭仕奇, “液體拉伸式微液體混合器之研發,” 國立清華大學碩士論文, 2001. [25]徐金城, “液面下單微孔氣泡成長之分析,” 國立台灣大學博士論文, 2002. [26]陳建甫, “表面張力致動式微液體混合器之研發,” 國立台灣大學碩士論文, 2002. [27]吳文彬, “表面張力驅動之直線微流道與氣泡截斷研究,” 國立台灣大學碩士論文, 2002. [28]宮春斐, “新型被動式微混合器之研發,” 國立台灣大學碩士論文, 2003. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39033 | - |
| dc.description.abstract | 微流體系統近年來在化學偵測、生醫檢測、藥物輸送等總體分析系統(TAS)上都有良好及廣大的應用。在微流道中能有效的阻斷流體,並具精確定量的方法,則是微流體系統中不可或缺的要素。
本研究使用表面張力的特性來驅動工作流體(水),利用親水性與疏水性的材料製成微流道,讓流體無需要任何外加驅動力(電力、幫浦)即可進入流道。並設計一微加熱器,以通電壓加熱沸騰流體產生微氣泡閥的方式截斷微流道內的流體,此方法可代替以往複雜的機械閥門結構。在已知流道尺寸的情況下,將可達到精確定量截斷的效果。在改變微流道兩旁氣泡阻擋層的結構後,使得氣泡閥在電壓解除後仍能在流道中維持很長的時間。 本研究亦利用疏水性間隔與氣泡閥配合截取微量流體,並運用電場或加熱改變液體表面張力的方式,來驅動被截取的微量流體。如此可提供一個定量截斷流體並且有效輸送此微量液體的方法。未來此構想可與其他微元件整合於晶片上,而成為實用的微流體定量截斷與輸送系統。 | zh_TW |
| dc.description.abstract | In recent decades, the micro-fluid-system has been widely applied in the field of TAS (Total Analysis System) such like chemical detection, drug delivery, and biomedical diagnosis. Cutting fluid effectively and delivering exact amount of fluid are essential parts in a micro-fluid-system.
This study introduces an effective method to drive DI water by means of the surface tension without introducing external devices or energy sources such as pumps or electric force. The micro channel is made of hydrophilic and hydrophobic materials. In addition, a micro heater has also been designed. With the electrical heating, the bubble generated in the liquid can block the water flowing in the channel and serve as a valve. This concept can replace the one involving complicated mechanical valves adopted before. Provided that the geometry of the micro channel is known, the volume of the fluid can be controlled. Furthermore, by modifying the pads at the sides of the channel, the bubble can stay unchanged for a period of time after the electric power has been removed. Thus, a tiny amount of water can be grabbed with the bubble-valve together with a hydrophobic gap across the channel. To transport this tiny amount of fluid, a driving force will be created to drive the tiny amount of fluid to cross the hydrophobic gap by modifying the surface tension with an electric field or heating. This is an innovative way to cut the liquid accurately and deliver the tiny drop effectively in a micro-channel system. Hopefully, in the future, this device can be batch-fabricated and be integrated to a lab-on-a-chip MEMS fluid system. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T16:58:28Z (GMT). No. of bitstreams: 1 ntu-94-R91543053-1.pdf: 2918236 bytes, checksum: 7340795bdec0160ed7c07514d45b54c8 (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | 誌謝………………………………………………Ⅰ
摘要………………………………………………Ⅲ 目錄………………………………………………Ⅴ 圖表目錄…………………………………………Ⅷ 第一章 緒論 1.1前言與研究動機………………………………1 1.2文獻回顧………………………………………5 1.2.1流體驅動與定量輸送之相關文獻…………5 1.2.2流體截斷氣泡生成之相關文獻……………12 1.3 研究方向與章節概述…………………………18 第二章 理論基礎與分析 2.1 表面張力………………………………………19 2.2 親水性和疏水性………………………………23 2.3 氣泡生成………………………………………28 2.4以電壓差驅動流體………………………………33 第三章 製程設計與材料選擇 3.1實驗規劃與設計…………………………………35 3.2 材料的選擇………………………………………37 3.2.1 工作流體………………………………………38 3.2.2 親水性材料……………………………………38 3.2.3 疏水性材料……………………………………40 3.2.4 金屬導線材料…………………………………42 3.2.5 加熱以產生汽泡的金屬材料…………………43 3.2.6 蝕刻阻檔層材料………………………………44 3.2.7 墊高厚度材料…………………………………45 3.2.8 氣泡阻檔層材料………………………………45 第四章 實驗設備與製程步驟 4.1 實驗儀器…………………………………………46 4.1.1 螢光光學顯微鏡………………………………46 4.1.2 直流電源供應器及數位電表…………………47 4.2 製程步驟…………………………………………48 4.2.1 起始清潔晶圓…………………………………51 4.2.2 沉積氮化矽(Si3N4)……………………………51 4.2.3 沉積鋁…………………………………………52 4.2.4 微影製程………………………………………52 4.2.5 鋁的蝕刻………………………………………54 4.2.6 鉻的製程………………………………………54 4.2.7 二氧化矽的製程………………………………55 4.2.8 鐵弗龍(Teflon)製程…………………………55 4.2.9 墊高及氣泡阻擋層製程………………………57 第五章 研究結果與討論……………………….…59 5.1 製程結果討論……………………………………59 5.1.1 親疏水流道製程結果…………………………59 5.1.2 光阻墊高製程結果……………………………62 5.1.3 導線和加熱器的製程結果……………………65 5.2 不同設計測試與氣泡生成情形…………………67 5.2.1初期氣泡測試……………………………………67 5.2.2流道結構變化測試………………………………70 5.2.3擋牆結構變化測試………………………………73 5.2.4跨越疏水間隔測試………………………………78 5.3 分析與討論………………………………………83 第六章 結論與未來展望……………………………85 參考文獻………………………………………………87 | |
| dc.language.iso | zh-TW | |
| dc.subject | 表面張力 | zh_TW |
| dc.subject | 藥物輸送 | zh_TW |
| dc.subject | 定量截斷 | zh_TW |
| dc.subject | 氣泡閥 | zh_TW |
| dc.subject | drug delivery | en |
| dc.subject | bubble-valve | en |
| dc.subject | hydrophilic | en |
| dc.subject | surface tension | en |
| dc.subject | hydrophobic | en |
| dc.title | 藥物輸送系統之無閥式微氣泡截量元件研發 | zh_TW |
| dc.title | A Design of Micro-bubble-cutting Device in a Drug Delivery Flow System | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張建成,陳瑞琳,陳弘正,張建中 | |
| dc.subject.keyword | 藥物輸送,定量截斷,氣泡閥,表面張力, | zh_TW |
| dc.subject.keyword | hydrophilic,bubble-valve,surface tension,drug delivery,hydrophobic, | en |
| dc.relation.page | 89 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-04-04 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 應用力學研究所 | zh_TW |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 2.85 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
