Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 財務金融學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39004
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor蘇永成
dc.contributor.authorFu-Yin Leeen
dc.contributor.author李馥吟zh_TW
dc.date.accessioned2021-06-13T16:56:56Z-
dc.date.available2007-07-04
dc.date.copyright2005-07-04
dc.date.issued2005
dc.date.submitted2005-05-30
dc.identifier.citation1.Admati, A. and P. Pfleiderer, 1988, “A Theory of Intraday Patterns: Volume and Price Variability,” Review of Financial Studies, 1, 3-40.
2.Back, K., C. H. Cao, and G. A. Williard, 2000, “Imperfect Competition among Informed Traders,” Journal of Finance, 55, 2117-2155.
3.Barclay, M. and J. Warner, 1993, “Stealth Trading and Volatility,” Journal of Financial Economics, 34, 281-305.
4.Barclay, M. J., T. Hendershott and D. T. Mccormick, 2003, “Competition Among Trading Venues: Information and Trading on Electronic Communications Networks,” Journal of Finance 58, 2637-2666.
5.Bollerslev, T., 1986, “Generalized Autoregressive Conditional Heteroskedasticity,” Journal of Econometrics, 31, 307-327.
6.Booth, G. G., J. C. Lin, T. Martikainen, and Y. Tse, 2002, “Trading and Pricing in Upstairs and Downstairs Stock Markets,” Review of Financial Studies, 15, 1111-1135.
7.Campbell, J. Y., S. J. Grossman, and J. Wang, 1993, “Trading Volume and Serial Correlation in Stock Returns,” Quarterly Journal of Economics, 108, 905-939.
8.Chakravarty, S., 2001, “Stealth-trading: Which Traders’ Trades Move Stock Prices?” Journal of Financial Economics, 61, 289-307.
9.Chan, K. and W. Fong, 2000, “Trade Size, Order Imbalance, and the Volatility-Volume Relation,” Journal of Financial Economics, 57, 247-273.
10.Chordia, T., and B. Swaminathan, 2000, “Trading Volume and Cross-Autocorrelations in Stock Returns,” Journal of Finance, 55, 913-935.
11.Chordia, T., R. Roll, and A. Subrahmanyam, 2002, “Order Imbalance, Liquidity, and Market Returns,” Journal of Financial Economics, 65, 111-130.
12.Chordia, T. and A. Subrahmanyam, 2004, “Order Imbalance and Individual Stock Returns: theory and evidence,” Journal of Financial Economics, 72, 485-518.
13.Copeland, T. E., 1976, “A model of Asset Trading under the Assumption of Sequential Information Arrival,” Journal of Finance, 31, 1149-1168.
14.F. A. Wang, 1998, “Strategic Trading, Asymmetric Information and Heterogeneous Prior Beliefs,” Journal of Financial Markets, 1,321-352.
15.Foster, D. F. and S. Viswanathan, 1993, “The Effect of Public Information and Competition on Trading Volume and Price Volatility,” The Review of Financial Studies, 6, 23-56.
16.Foster, D. F. and S. Viswanathan, 1994, “Strategic Trading with Asymmetric Informed Traders and Long-Lived Information,” Journal of Financial and Quantitative Analysis, 29, 499-518.
17.Foster, D. F. and S. Viswanathan, 1996, “Strategic Trading When Agents Forecast the Forecasts of Others,” Journal of Finance, 51, 1437-1478.
18.French, K. R., G. W. Schwert, and R. F. Stambaugh, 1987, “Expected Stock Returns and Volatility,” Journal of Financial Economics, 19, 3-29.
19.Gallant, R., P. Rossi, and G. Tauchen, 1992, “Stock Prices and Volume,” Review of Financial Studies, 5, 199-242.
20.Grossman, S., 1976, “On the Efficiency of Competitive Stock Markets Where Traders Have Diverse Information,” Journal of Finance, 31, 573-585.
21.Hasbrouck, J., 1991, “Measuring the Information Content of Stock Trades,” Journal of Finance, 46, 179-207.
22.He, H., and J. Wang, 1995, “Differential Information and Dynamic Behavior of Trading Volume,” Review of Financial Studies, 8, 919-972.
23.Heflin, F., and K. W. Shaw, 2000 “Trade Size and the Adverse Selection Component of the Spread: Which Trades Are 'Big'?”
24.Holden, C. W., and A. Subrahmanyam, “Long-Lived Private Information and Imperfect Competition,” Journal of Finance, 47, 247-270.
25.Hong, H., and J. Wang, 2000, “Trading and Returns under Periodic Market Closures,” Journal of Finance, 55, 297-354.
26.Jones, C., G. Kaul, and M. Lipson, 1994, “Transactions, Volume and Volatility,” Review of Financial Studies, 7, 631-652.
27.Karpoff, J., 1986, “A Theory of Trading Volume,” Journal of Finance, 41, 1069-1087.
28.Karpoff, J., 1987, “The Relation between Price Changes and Trading Volume: A Survey,” Journal of Financial and Quantitative Analysis, 22, 109-126.
29.Kyle, A., 1985, “Continuous Auctions and Insider Trading,” Econometrica, 53, 1315-1335.
30.Lamoureux, C., and W. Lastrapes, 1990, “Heteroskedasticity in Stock Return Data: Volume versus GARCH Effects,” Journal of Finance, 45, 221-229.
31.Lee, C. M C., and M. J. Ready, 1991, “Inferring Trade Direction from Intraday Data,” Journal of Finance, 46, 733-746.
32.Lee, Y. T., Y.J. Liu, R. Roll and A. Subrahmanyam, 2003, “Order Imbalances and Market Efficiency: Evidence from the Taiwan Stock Exchange,” Journal of Financial and Quantitative Analysis, 20 01
33.Lin, C. M., 2003, “Information Asymmetry and Return-Volume Relation: A Time Varying Model based upon Order Imbalance and Individual Stock,” Graduate Institute of Finance of National Taiwan University.
34.Lin, J. C., 2004, “Price-Volume Relation - A Time Varying Model with Censored and Camouflage Effects,” Graduate Institute of Finance of National Taiwan University.
35.Lin, J. C., G. C. Sanger, and G. G. Booth, 1995, “Trade Size and Components of the Bid-Ask Spread,” Review of Financial Studies, 8, 1153-1183.
36.Llorente, G., R. Michaely, G. Saar, and J. Wang, 2002, “Dynamic Volume-Return Relation of Individual Stocks,” Review of Financial Studies, 15, 1005-1047.
37.Lo, A. and J. Wang, 2000, “Trading Volume: Definitions, Data Analysis, and Implications of Portfolio Theory,” Review of Financial Studies, 13, 257-300.
38.Lo, A. W., and A. C. MacKinlay, 1988, “Stock Market Prices do not Follow Random Walks: Evidence from a Simple Specification Test,” Review of Financial Studies, 1, 41-66.
39.Morse, D., 1980, “Asymmetric Information in Securities Markets and Trading Volume,” Journal of Financial and Quantitative Analysis, 15, 1129-1148.
40.Wang, J., 1993, “A Model of Intertemporal Asset Prices Under Asymmetric Information,” Review of Economic Studies, 60, 249-282.
41.Wang, J., 1994, “A Model of Competitive Stock Trading Volume,” Journal of Political Economy, 102, 127-168.
42.Woodruff, C. S., and A. J. Senchack Jr., 1988, “Intraday Price-Volume Adjustments of NYSE Stocks to Unexpected Earnings,” Journal of Finance, 43, 467-491.
43.Yu, Y. H., 2002, “Information Asymmetry and Price-Volume Relations,” Graduate Institute of Business Administration of National Taiwan University.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39004-
dc.description.abstract依據之前的研究,我們知道日買賣單不對稱對股價報酬率有顯著的解釋能力。然而我們認為,日內買賣單不對稱對於股價報酬率應有更好的解釋效果,因為日內資料所帶來的應是最新的市場資訊,對於股價報酬率的影響力應該較過去的日買賣單不對稱更強。因此於本研究中,我們採用日內資料做為樣本。
利用GARCH(1,1)、與時間序列複迴歸模型,我們發現在日內買賣單不對稱與股價報酬率間,確實存在著同期效果,亦即同期之日內買賣單不對稱對於股價報酬率有良好的解釋能力。然而,我們卻無法於其中發現預測能力,亦即前一期之日內買賣單不對稱對於當期股價報酬率並無顯著之預測能力,此結果與我們的預期不相符合。
最後,我們建構一簡單迴歸模型來偵測小型股效果。迴歸結果顯示,資本額愈小的公司,其同期日內買賣單不對稱對於股價報酬率的影響力愈大,表示確實存在著小型股效果。
zh_TW
dc.description.abstractBy former researches we learn that daily order imbalance has significant explanatory power to daily return. And we think that intraday order imbalance is more useful information to investors because it may contain the latest market information and will have greater influence to stock price than those of previous transaction days. Thus we adopt intraday data in our research, to investigate the relation between intraday return and order imbalance.
In this research we try to see if intraday order imbalance has explanatory power to return. By using dynamic time and sale data in GARCH(1,1) model and by 90-second data in time-series regression models, we find out that there is significant contemporaneous effect, that is, the contemporaneous order imbalance has explanatory power to return, both in dynamic and 90-second time and sale data. On the other hand, we do not see significant predictability in lag-one period order imbalance to return, that is, the lag-one period order imbalance does not show predictability to contemporaneous return.
At last, we build a cross-sectional regression model to test the small-firm effect. We found out that there is small-firm effect. It means that the smaller the firm’s capital expenditure, the greater the influence of order imbalance to its stock return.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T16:56:56Z (GMT). No. of bitstreams: 1
ntu-94-R92723043-1.pdf: 399037 bytes, checksum: 97179738c7625cfa1ed810f469f43b2f (MD5)
Previous issue date: 2005
en
dc.description.tableofcontentsChapter 1 Introduction 1
1.1 Motives and Purposes 1
1.2 Framework of the Thesis 4
Chapter 2 Literature Review 5
2.1 Information Asymmetry 5
2.2 Price-Volume Relation 7
Chapter 3 Data 11
3.1 Data Sample and Sources 11
3.2 Descriptive Statistics 13
Chapter 4 Methodology 15
4.1 Dynamic Return-Order Imbalance Relationship 15
4.2 Contemporaneous Effect and Predictability 17
4.3 Size Effect 18
Chapter 5 Empirical Results 20
5.1 Dynamic Return-Order Imbalance Relationship 20
5.2 90-Second Return-Order Imbalance Relationship 21
5.2.1 Contemporaneous Effect 21
5.2.2 Lag-One Period Effect - Predictability 23
5.3 Size Effect 24
Chapter 6 Conclusion 26
References 55
dc.language.isoen
dc.subject價量關係zh_TW
dc.subject買賣單不對稱zh_TW
dc.subject資訊不對稱zh_TW
dc.subjectorder imbalanceen
dc.subjectprice-volume relationen
dc.subjectinformation asymmetryen
dc.titleNASDAQ新低投機型個股之日內報酬-買賣單不對稱關係zh_TW
dc.titleIntraday Return-Order Imbalance Relation in NASDAQ Speculative New Lowsen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳聖賢,何耕宇
dc.subject.keyword價量關係,買賣單不對稱,資訊不對稱,zh_TW
dc.subject.keywordinformation asymmetry,price-volume relation,order imbalance,en
dc.relation.page58
dc.rights.note有償授權
dc.date.accepted2005-05-30
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept財務金融學研究所zh_TW
Appears in Collections:財務金融學系

Files in This Item:
File SizeFormat 
ntu-94-1.pdf
  Restricted Access
389.68 kBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved