請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39001
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 貝蘇章 | |
dc.contributor.author | Ming-Yang Chen | en |
dc.contributor.author | 陳明揚 | zh_TW |
dc.date.accessioned | 2021-06-13T16:56:46Z | - |
dc.date.available | 2005-06-14 | |
dc.date.copyright | 2005-06-14 | |
dc.date.issued | 2005 | |
dc.date.submitted | 2005-05-31 | |
dc.identifier.citation | [1] S. M. Alamouti, “A simple transmit diversity technique for wireless communications,” IEEE Journal on Selected Areas in Communications, Vol.16, No.8, pp. 1451–1458, October 1998.
[2] J.-C. Belfiore and G. Rekaya, “Quaternionic lattices for space-time coding,” in Proceedings of the 2003 IEEE Information Theory Workshop, ITW 2003, pp. 267–270, Paris, France, March-April 2003. [3] M.-Y. Chen, C.-Y. Chen, H.-C. Li, S.-C. Pei, and John M. Cioffi, “Deriving new quasi-orthogonal space-time block codes and relaxed designing viewpoints with full transmit diversity,” to appear in Proceedings of the 2005 IEEE International Conference on Communications, ICC 2005, Seoul, Korea, May 2005. [4] M.-Y. Chen, H.-C. Li, and S.-C. Pei, “Algebraic identification for optimal nonorthogonality 4 × 4 complex space-time block codes using tensor product on quaternions,” IEEE Transactions on Information Theory, Vol.51, No.1, pp. 324–330, January 2005. [5] H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, Springer-Verlag Berlin and Heidelberg, 1980. [6] M. O. Damen, K. Abed-Meraim, and J.-C. Belfiore, “Diagonal algebraic space-time block codes,” IEEE Transactions on Information Theory, Vol.48, No.3, pp. 628–636, March 2002. [7] A. Hottinen, O. Tirkkonen, and R. Wichman, Multi-antenna transceiver techniques for 3G and beyond, John Wiley and Son, England, 2003. [8] J. Hou, M. H. Lee, and J. Y. Park, “Matrices analysis of quasi-orthogonal space-time block codes,” IEEE Communications Letters, Vol.7, No.8, pp. 385–387, August 2003. [9] H. Jafarkhani, “A quasi-orthogonal space-time block code,” IEEE Transactions on Communications, Vol.49, No.1, pp. 1–4, January 2001. [10] T. Nagase, M. Komata, and T. Araki, “Secure signals transmission based on quaternion encryption scheme,” in Proceedings of the 18th International Conference on Advanced Information Networking and Applications, AINA 2004, Vol.2, pp. 35–38, Fukuoka, Japan, March 2004. [11] J. P. Serre, Linear Representations of Finite Groups, Springer-Verlag, New York, 1993. [12] B. A. Sethuraman and B. Sundar Rajan, “Full-rank, full-rate STBCs from division algebras,” in Proceedings of the 2002 IEEE Information Theory Workshop, ITW 2002, pp. 69–72, Bangalore, India, October 2002. [13] B. A. Sethuraman and B. Sundar Rajan, “An algebraic description of orthogonal designs and the uniqueness of the Alamouti code,” in Proceedings of the 2002 IEEE Global Communications Conference, GLOBECOM 2002, Vol.2, pp. 1088–1092, Taipei, Taiwan, R.O.C., November 2002. [14] B. A. Sethuraman, B. Sundar Rajan, and V. Shashidhar, “Full-diversity, high-rate space-time block codes from division algebras,” IEEE Transactions on Information Theory, Vol.49, No.10, pp. 2596–2616, October 2003. [15] W. Su and X.-G. Xia, “Signal constellations for quasi-orthogonal space-time block codes with full diversity,” IEEE Transactions on Information Theory, Vol.50, No.10, pp. 2331–2347, October 2004. [16] V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “Space-time block codes from orthogonal designs,” IEEE Transactions on Information Theory, Vol.45, No.5, pp. 1456–1467, July 1999. [17] V. Tarokh, N. Seshadri, and A. R. Calderbank, “Space-time codes for high data rate wireless communication: performance criterion and code construction,” IEEE Transactions on Information Theory, Vol.44, No.2, pp. 744–765, March 1998. [18] O. Tirkkonen, A. Boariu, and A. Hottinen, “Minimal non-orthogonality rate 1 space-time block code for 3+ Tx antennas,” in Proceedings of the 2000 IEEE International Symposium on Spread Spectrum Techniques and Applications, ISSSTA 2000, Vol.2, pp. 429–432, Parsippany, NJ, U.S.A., September 2000. [19] O. Tirkkonen and A. Hottinen, “Square-matrix embeddable space-time block codes for complex signal constellations,” IEEE Transactions on Information Theory, Vol.48, No.2, pp. 384–395, February 2002. [20] E. Viterbo and J. Boutros, “A universal lattice code decoder for fading channels,” IEEE Transactions on Information Theory, Vol.45, No.5, pp. 1639–1642, July 1999. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39001 | - |
dc.description.abstract | The designing potential of using quaternionic numbers to identify a 4 × 4 real orthogonal space-time block code has been exploited in various communication articles. Although it has been shown that orthogonal codes in full rate exist only for 2 Tx-antennas in complex constellations, a series of complex quasi-orthogonal codes for 4 Tx-antennas is still proposed to have good performance recently. This quasi-orthogonal scheme enables the codes reach the optimal non-orthogonality, which can be measured by taking the expectation over all transmitted signals of the ratios between the powers of the off-diagonal and diagonal components. In Chapter 1 of this thesis, we extend the quaternionic identification to the above encoding methods. Based upon tensor product for giving the quaternionic space a linear extension, a complete necessary and sufficient condition of identifying any given complex quasi-orthogonal code with the extended space is generalized by considering every possible 2-dimensional R-algebra.
In Chapter 2, a new set of quasi-orthogonal space-time block codes for 4 Txantennas derived by a group-theoretic methodology on the generalized quaternion group of order 16 is presented. We show that these new codes achieve full diversity whenever a square lattice constellation is adopted. From the simulation results, the new designs perform very closely to quasi-orthogonal codes with constellation rotations and admit high coding gains (in fact we prove their coding gains are optimal among those codes whose diagonal entries are all within z1, z1†, or multiples of them by a uni-power coefficient). Without a search of the optimal rotation angle and any constellation expansion, our new codes yield an advantageous transmission scheme for QPSK and 16-QAM modulations. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T16:56:46Z (GMT). No. of bitstreams: 1 ntu-94-R92942108-1.pdf: 560906 bytes, checksum: 102f4ef7eccfef710f07e482514302e9 (MD5) Previous issue date: 2005 | en |
dc.description.tableofcontents | Acknowledgements v
Abstract vi 1 Algebraic Identification for QOSTBCs 1 1.1 Introduction . . . . . . . . . . . 1 1.2 Mathematical Principles . . . . . .5 1.2.1 Tensor Product . . . . . . . . . 6 1.2.2 R-algebras . . . . . . . . . . . 7 1.3 QOSTBCs and Quaternions . . . . . 8 1.4 Conclusions and FutureWork . . . .22 2 New QOSTBCs 24 2.1 Introduction . . . .. . . . . . . 24 2.2 SystemModel and Design Criteria . 27 2.3 New Full-Diversity QOSTBCs . . . .29 2.3.1 Code Construction . . . . . . . 34 2.3.2 Full Diversity on Square Lattice Constellations . . . . . . . . . . . .38 2.4 Simulation Results and Discussions . . . . . . . . . . . . . 43 2.5 Conclusions . . . . . . . . . . . 46 Bibliography 47 | |
dc.language.iso | en | |
dc.title | 有限群表現理論在複數時空編碼上之設計及應用 | zh_TW |
dc.title | Designing Complex Space-Time Block Codes via Representation Theory on Finite Groups | en |
dc.type | Thesis | |
dc.date.schoolyear | 93-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 張豫虎,祈忠勇,徐忠枝 | |
dc.subject.keyword | 群表現,時空編碼, | zh_TW |
dc.subject.keyword | Representations of Finite Groups,Space-Time Block Codes,Generalized Quaternion Groups, | en |
dc.relation.page | 50 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2005-06-01 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
顯示於系所單位: | 電信工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-94-1.pdf 目前未授權公開取用 | 547.76 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。