Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38996
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor薛文証
dc.contributor.authorKun-Sung Yangen
dc.contributor.author楊坤松zh_TW
dc.date.accessioned2021-06-13T16:56:29Z-
dc.date.available2007-07-04
dc.date.copyright2005-07-04
dc.date.issued2005
dc.date.submitted2005-06-02
dc.identifier.citation[1]S. Fatikow, U. Rembold, Microsystem Technology and Microrobotics, Springer, 1997。
[2]W. G. Julian, K. V. Vijay, O. A. Osama, Microsensors MEMS and Smart Devices, Wiley, 2001.。
[3]D. S. Ballantine, S. J. Matrin, R. M. White, H. Wohltjen, E. T. Zellers, Acoustic Wave Sensors:Theory, Design, and Physico-Chemical Applications, Academic Press, New York, 1997.
[4]T. R. Hsu, MEMS & Microsystems Design and Manufacture, McGraw-Hill, 2002.
[5]C. Lu, A. W. Czanderna, Application of Piezoelectric Quartz Crystal Microbalance, Elsevier Science Publishing Company Inc. 1984.
[6]A. J. Cunningham, Introduction to Bioanalytical Sensors, Wiley, New York, 1998.
[7]W. G. Cady, Piezoelectricity : An Introduction to the Theory and Applications of Electromechanical Phenomena in Crystals, McGraw-Hill, New York, 1964.
[8]J. T. Michael, Communications and industrial relations coordinator Detection and Food Safety Center, Auburn University. (http://audfs.eng.auburn.edu/)
[9]G. Sauerbrey, “Verwendung von schwingquarzen zur Schichten und zur ”, Z. Phys., vol.155, pp.206-222, 1959.
[10]W. H. King, “Piezoelectric sorption detector”, Anal. Chem., vol.36, pp.1735-1739, 1964.
[11]G. G. Guibault, “Determination of formaldehyde with an enzyme-coated piezoelectric crystal detector”, Anal. Chem., vol.55, pp.1682-1684, 1983.
[12]K. Nigorikawa, Y. Kunugi, Y. Harima, and K. Yamashita, “A selective gas sensor using a polypyrrole thin film as sensitive matrix on a piezoelectric crystal”, J. Electroanal. Chem., vol.396, pp. 563-567, 1995.
[13]A. Hierlemann, U. Weimar, G. Kraus, M. S. Berberich, W. , “Polymer-based sensor arrays and multicomponent analysis for the detection of hazardous organic vapours in the enviroment”, Sensors and Actuators (B), vol.26-27, pp.126-134,1995.
[14]K. Ariga, k. Endo, Y. Aoyama, Y. Okahata, “QCM analyses on adsorption of gaseous guests to cast films of porphyrin-resorcinol derivatives”, Colloid. Surf. A, vol.169, pp.177-186, 2000.
[15]T. A. Rocha, M. T. Gomes, A. C. Duarte, J. A. Oliveira, “A quartz crystal microbalance sensor for the determination of Nitroaromatics in landfill gas”, Talanta., vol.51, pp.1149-1153, 2000.
[16]L. C. Brousseau, D. J. Aurenta, A. J. Benesi, T. E. Mallouk, “Molecular design of intercalation-based sensors. 2. sensing of carbon dioxide in functionalized thin films of copper octanediylbis(phosphonate)”, Anal. Chem., vol.69, pp.688-694, 1997.
[17]M. T. Gomes, T. A. Rocha, A. C. Duarte, J. P. Oliveira, “Performance of a tetramethylammonium fluoride tetrahydrate coated piezoelectric crystal for carbon dioxide detection”, Anal. Chim. Acta, vol. 335, pp.235-238, 1996.
[18]http://www.chem.ntnu.edu.tw/antiFire/07.htm
[19]J. F. De Andrade, A. A. Suleiman, G. G. Guilbault, “A coated piezoelectric crystal detector for the determination of hydrogen sulfide”, Anal. Chim. Acta, vol, 217, pp.187-192, 1989.
[20]J. A. O. Sanchez-Pedreno, P. K. P. Drew, J. F. Alder, “The investigation of coating materials for the detection of nitrobenzene with coated quartz piezoelectric crystals”, Anal. Chim. Acta, vol, 182, pp.285-291, 1986.
[21]P. L. Konash, G. J. Bastiaans, “Piezoelectric crystal as detectors in liquid chromatography”, Anal. Chem., vol.52, pp.1929-1931, 1980.
[22]T. Nomura, M. Iijima, “Electrolytic determination of nanomolar concentrations of silver in solution with a piezoelectric quartz crystal”, Anal. Chim. Acta, vol, 131, pp.97-102, 1981.
[23]M. Thomposon, C.L. Arthur, G.K. Dhaliwal, “Liquid-phase piezoelectric and acoustic transmission studies of interfacial immunochemistry”, Anal. Chem. Vol.58, pp.1206-1209,1986。
[24]K. K. Kanazawa, J. G. Gordon, “Frequency of a quartz microbalance in contact with liquid”, Anal. Chem., vol. 57, pp.1170-1171, 1985.
[25]K. K. Kanazawa, J. G. Gordon, “The oscillation frequency of a quartz resonator in contact with a liquid”, Analy. Chim. Acta, vol. 175, pp.99-105, 1985.
[26]P. Kern, D. Landolt, “Adsorption of an organic corrosion inhibitor on iron and gold studied with a rotating EQCM”, J. Electrochem. Soc., vol.148, pp.B228-B235, 2001.
[27]O. B. Wilson, Introduction to Theory and Design of Sonar Transducers, Los Altos, California, USA, 1988.
[28]R. F. Schmitt, J. W. Allen, J. F. Vetelino, J. Parks, C. Zhang, “Bulk acoustic wave modes in quartz for sensing measurand induced mechanical and electrical property changes”, Sensors and Actuators (B), vol.76, pp.95-102, 2001.
[29]V. E. Bottom, Introduction to quartz crystal unit design, Van Nostrand Reinhold Company, New York, 1982 。
[30]B. A. Auld, Acoustic Fields and Waves in Solids, Wiley, New York, 1973。
[31]J. F. Rosenbaum, Bulk Acoustic Wave Theory and Devices, Artech House, Boston, Sect. 10.5, 1988。
[32]R. Lucklum, C. Behling, R. W. Cernosek, S. J. Martin, “Detremination of complex shear modulus with thickness shear mode resonatros”, J. Phys. D: Appl. Phys., vol.30, pp.346-356, 1997.
[33]S. J. Martin, V. E. Granstaff, G. C. Frye, “Characterization of a quartz crystal microbalance with simultaneous mass and liquid loading”, Anal. Chem., vol. 63, pp.2272-2281, 1991.
[34]S. J. Martin, G. C. Frye, A. J. Ricco, S. D. Senturia, “Effect of surface roughness on the response of thickness-shear mode resonators in liquids”, Anal. Chem., vol.65, pp.2910-2922, 1993.
[35]A. Arnau, Y. Jimenez, T. Sogorb, “An extended Butterworth-Van Dyke model for quartz crystal microbalance application in viscoelastic fluid media”, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol.48, pp.1367-1382, 2001.
[36]W. J. Hsueh, “Analysis of vibration isolation systems using a graph model”, J. Sound. Vib., vol.216, pp.399-412, 1998.
[37]W. J. Hsueh, “Novel graph model and analysis method for piezoelectric thickness-drive transducers”, J. Acoust. Soc. Am., vol.108, pp.2159-2165, 2000.
[38]S. J. Mason, “Feedback theory-further properties of signal flow graphs”, Proc. IRE, vol.44, pp.920-926, 1956.
[39]D. D. Kee, J. Stastna, M. B. Powley, “Investigation of a new complex viscosity model”, J. Non-Newtonian Fluid Mechanics, vol.26, pp.149-160, 1987.
[40]H. L. Bandey, S .J. Martin, R. W. Cernosek, “Modeling the responses of thickness-shear mode resonators under various loading conditions”, Anal. Chem., vol.71, pp. 2205-2214, 1999。
[41]R. W. Cernosek, S. J. Martin, A. R. Hillman, H. L. Bandey, “Comparison of lumped-element and transmission-line models for thickness-shear-mode quartz resonator sensors”, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol.45, pp.1399-1407, 1998.
[42]C. E. Reed, K. K. Kanazawa, J. H. Kaufman, “Physical description of a viscoelastically loaded AT-cut quartz resonator”, J. Appl. Phys., vol.68, pp.1993-2001, 1990.
[43]A. Arnau, Y. Jimenez, T. Sogorb, “Thickness-shear mode quartz crystal resonators in viscoelastic fluid media”, J. Appl. Phys., vol.88, pp.4498-4506, 2000.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38996-
dc.description.abstract本論文主要主題為研究TSM之特性,目的在建立一組TSM共振器分析模式,以供日後相關設計研發上的參考及應用。
目前模擬TSM共振器,尤其是QCM之模式主要為TLM、BVD或EBVD等效電路。在本文中我們利用一種新的分析模式-TWSF,此模式不但能夠找出各參數之間的關係,並且利用此模式所建立的TSM分析方法,非常便利。利用此方法可找出駐波相位差角度,利用相位差與負載物之阻抗,就能夠簡單計算出共振頻率的飄移與導納響應大小值。在本文中並利用此方法推導並簡化出QCM受馬克斯威廉流體、黏彈性液體負載之頻率飄移、導納響應大小之公式。
zh_TW
dc.description.abstractThe main subject of this thesis is to study the characteristic of TSM and to set up an analyzing model of TSM resonator for design and applications.
At present, TLM, BVD or EBVD equivalent circuit have been applied on TSM resonator, especially for QCM. We utilize a kind of new analytic way-TWSF in this article. This method is need to find out the correlation between each parameter, for more accurate and convenient. Utilizing this analytic way standing shear wave phase angle shift can be calculated. The shift of resonant frequency and admittance response can also be calculated by the phase shift and loading impedance. In addition, this model is used to derive the formulas of frequency shift and admittance while the loading are the Maxwellian fluid or the viscoelastic fluid.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T16:56:29Z (GMT). No. of bitstreams: 1
ntu-94-R90525048-1.pdf: 829851 bytes, checksum: 9b757787962ea39f1a6c2e21cfdfff3c (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents目 錄
摘要………………………………………….….………………………...I
英文摘要…………………………………….….……………………….II
目錄……………………………………………….….…………………III
表目錄……………...…………………………….….………………….VI
圖目錄…………………………………………….….……………..VII
符號表…………………………………………….….………………X
第一章 緒論……………………………………………………………..1
1-1 研究背景與動機………………………………………………..1
1-2 文獻探討………………………………………………………..3
1-3 論文組織………………………………………………………..6
第二章 TSM振盪器感測原理………………………………...…………8
2-1 壓電本構方程式……………………………………………..…8
2-2石英晶體……………………………………………………….10
2-3 等效電路………………………………………………………12
2-3-1 一維平板之等效電路……………………………………12
2-3-2壓電平板之等效電路………………………………….…14
2-3-3 TLM等效電路………………………………………….…17
2-3-4 BVD等效電路………………………………………….…18
2-4 QCM表面質量效應……………………………………….……21
2-4-1具負載之共振頻率……………………………….………21
2-4-2理想質量層頻率飄移…………………………………….23
2-4-3牛頓流體液體頻率飄移…………………………….……24
第三章 TWSF模式分析……………………………………………...…26
3-1 TWSF模式…………………………………………………..….27
3-2 TWSF模式分析與簡化………..……......………………...…..30
3-2-1 QCM之剪力波與相位………….…………………………32
3-2-2 TWSF模式之簡化……………...…………………………33
3-3 QCM模式負載效應…………………….………………………34
3-3-1無質量負載………………………………………….……34
3-3-2 理想質量層負載……………………..……………..……35
3-3-3 半無窮域流體負載…………………..……………..……36
第四章 模擬分析與比較………………………………………………41
4-1無負載響應………………………………………………….…41
4-2理想質量負載響應………………………………………….…42
4-3 半無窮域流體負載時響應……………………………………43
4-3-1牛頓流體………………………………………….………43
4-3-2 黏滯、彈性流體…………………………………………43
第五章 結論與展望……………………………………………………47
5.1 結論……………………………………………………………48
5-2 未來展望……..………………………………….….……….…49
dc.language.isozh-TW
dc.subject生物感測器zh_TW
dc.subject壓電晶體zh_TW
dc.subject等效電路zh_TW
dc.subject石英晶體微天秤zh_TW
dc.subjectTSMen
dc.subjectQCMen
dc.subjectbiosensoren
dc.titleTSM振盪器應用於生化感測之研究zh_TW
dc.titleStudies on TSM oscillator for biochemical detectionen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee柯文俊,廖建義,林真誠
dc.subject.keyword壓電晶體,生物感測器,石英晶體微天秤,等效電路,zh_TW
dc.subject.keywordQCM,biosensor,TSM,en
dc.relation.page80
dc.rights.note有償授權
dc.date.accepted2005-06-06
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工程科學及海洋工程學研究所zh_TW
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
810.4 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved