Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 國際企業學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38992
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor任立中(Lichung Jen)
dc.contributor.authorChing-I Chenen
dc.contributor.author陳靜怡zh_TW
dc.date.accessioned2021-06-13T16:56:14Z-
dc.date.available2005-07-26
dc.date.copyright2005-07-26
dc.date.issued2005
dc.date.submitted2005-06-05
dc.identifier.citationAilawadi, Kusum L. and Scott A. Neslin (1998), “The Effect of Promotion on Consumption: Buying More and Consuming It Faster,” Journal of Marketing Research, Vol. 35, Augsut, 390-398.
Allenby, Greg M., Robert P. Leone, and Lichung Jen (1999), “A Dynamic Model of Purchase Timing With Application to Direct Marketing,” Journal of American Statistical Association, Vol. 94, No. 446, 365-374.
Banerjee, A. K. and G. K. Bhattacharyya (1976), “A Purchase Incidence Model with Inverse Gaussian Interpurchase Times,” Journal of the American Statistical Association, Vol. 71, No. 356, 823-829.
Bass, Frank M. (1969), “A New Product Growth For Model Consumer Durables,” Management Science, Vol. 15, No. 5, 215-227.
Ben Akiva, M. and S. Lerman (1985), Discrete Choice Analysis, Cambridge, MA: MIT Press.
Bucklin, Randolph E. and James M. Lattin (1991), “A Two-State Model of Purchase Incidence and Brand Choice,” Marketing Science, Vol. 10, No. 1, 24-39.
Bucklin, Randolph E. and Sunil Gupta (1992), “Brand Choice, Purchase Incidence, and Segmentation: An Integrated Modeling Approach,” Journal of Marketing Research, Vol. 29 (May), 201-215.
Cameron, Colin, and Pravin Trivedi. (1986), “Econometric Models Based on Count Data: Comparisons and Applications of Some Estimators and Tests,” Journal of Applied Econometrics, Vol. 1, No. 1, 29-54.
Chiang, Jeongwen (1991), “A Simultaneous Approach to The Whether, What and How Much to Buy Questions,” Marketing Science, Vol. 10, No.4, Fall, 297-315.
Chintagunta, Pradeep K. (1993), “Investigating Purchase Incidence, Brand Choice and Purchase Quantity Decisions of Households,” Marketing Science, Vol. 12, No. 2, Spring, 184-208.
Christensen, L. R., D. W. Jougenson and L. J. Lau (1975), “Transcendental Logarithmic Utility Functions,” American Economic Review, Vol. 3, 367-383.
Cox, D. R. (1972), “Regression Models and Life-Tables,” Journal of Royal Statistical Society B, Vol. 34, 187-200.
Currim, Imran S. (1981), “Using Segmentation Approaches for Better Prediction and Understanding From Consumer Mode Choice Models,” Journal of Marketing Research, Vol. 18 (August), 301-309.
Deaton, Angus and John Muellbauer (1980), Economics and Consumer Behavior. Cambridge: Cambridge University Press.
Ehrenberg, A. S. C. (1959), “The Pattern of Consumer Purchases,” Applied Statistics, Vol. 8, No. 1, 16-41.
Fader, Peter S. and Leigh McAlister (1990), “An Elimination by Aspects Model of Consumer Response to Promotion Calibrated on UPC Scanner Data,” Journal of Marketing Research, Vol. 27 (August), 322-332.
Flinn, C. and J. Heckman (1982), “Models for the Analysis of Labor Force Dynamics,” in Advances in Econometrics, Vol. 1, 35-95. G Rhodes and R. Basmann (Eds.), Greenwich: JAI Press.
Folkes, Valerie S., Ingrid M. Martin, and Kamal Gupta (1993), “When to Say When: Effects of Supply on Usage,” Journal of Consumer Research, Vol. 20, December, 467-477.
Gelfand, Alan, and Adrian Smith (1990), “Sampling-Based Approaches to Calculating Marginal Densities“, Journal of the American Statistical Association, Vol. 85, 398-409.
Geman, S. and D. J. Geman (1984), “Stochastic Relaxation, Gibbs Distributions and the Bayesian Restoration of Images,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 6, 721-741.
Geweke, John (1992), “Evaluating the Accuracy of Sampling-Based Approaches to the Calculation of Posterior Moments,” J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith (eds.), Bayesian Statistics 4, Oxford: Oxford University Press.
Guadagni, P. M. and J. D. C. Little (1987), “When and What to Buy: A Nested Logit Model of Coffee Purchase,” MIT Sloan School Working Paper WP 1919-1987.
Guadagni, P. M. and J. D. C. Little (1998), “When and What to Buy: A Nested Logit Model of Coffee Purchase,” Journal of Forecasting, Vol. 17, 303-326.
Gupta, Sunil (1991), “Stochastic Models of Interpurchase Time With Time-Dependent Covariates,” Journal of Marketing Research, Vol. 28, February, 1-15.
Hanemann, W. Michael (1984), “Discrete/Continuous Models of Consumer Demand,” Econometrica, Vol. 52, 541-561.
Hastings, W. K., Monte Carlo Sampling Methods Using Markov Chains and Their Applications, Biometrika, Vol.57, 1970, pp.97-109.
Heerde, Harald J. van, Peter S. H. Leeflang, and Dick R. Wittink (2004), “Decomposing the Sales Promotion Bump with Store Data,” Marketing Science, Vol. 23, No. 3, 317-334.
Helsen Kristiaan and David C. Schmittlein (1993). “Analyzing Duration Times in Marketing: Evidence for The Effectiveness of Hazard Rate Models,” Marketing Science, Vol. 11, No. 4, 395-414.
Jain, Dipak C. and Naufel J. Vilcassim (1991), “Investigating Household Purchase Timing Decisions: A Conditional Hazard Function Approach,” Marketing Science, Vol. 10, No. 1, 1-23.
Kalbfleisch, J. D. and R. L. Prentice (1980), The Statistical Analysis of Failure Time Data, New York: John Wiley and Sons.
Lancaster, Kelvin J. (1971), Consumer Demand: A New Approach, New York: Columbia University Press.
Lawrence, R. J. (1980), “The Lognormal Distribution of Buying Frequency Rates,” Journal of Marketing Research, Vol. 17, May, 212-220.
MacFadden, Daniel (1981), “Econometric Models of Probabilistic Choice,” in Charles F. Manski and Daniel McFadden (Eds.), Structural Analysis of Discrete Data with Econometric Applications, Cambridge, MA: MIT Press.
Maddala, G. S. (1983), Limited-Dependent and Qualitative Variables in Econometrics, Cambridge: Cambridge University Press.
Metropolis, N., A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, Equations of State Calculations by Fast Computing Machines, Journal of Chemical Physics, Vol.21, 1953, pp.1087-1092.
Morisson, Donald G. and David C. Schmittlein (1988), “Generalizing the NBD Model for Customer Purchases: What Are the Implications and Is It Worth the Effort?,” Journal of Business & Economic Statistics, Vol. 6, No. 2, 145-159.
Neslin, Scott A. and Linda G. Schneider Stone (1996), “Consumer Inventory Sensitivity and the Postpromotion Dip,” Marketing Letters, Vol. 7, No. 1, 77-94.
Rossi E. Peter, Robert E. McCulloch, and Greg M. Allenby (1995), “The Value of Purchase History Data in Target Marketing,” Marketing Science, Vol. 15, No. 4, 321-340.
Rossi, Peter E. and Greg M. Allenby (2003), “Bayesian Statistics and Marketing,” Marketing Science, Vol. 22, No. 3, 304-328.
Schoenbachler, Denise D., Geoffrey L. Gordon, Dawn Foley, and Linda Spellman (1997), “Understanding Consumer Database Marketing,” Journal of Consumer Marketing, Vol. 14, No. 1, 5-19.
Tanner, Martin A. and Wing Hung Wong (1987), “The Calculation of Posterior Distributions by Data Augmentation,” Journal of the American Statistical Association, Vol.82, No. 398, 528-540.
Wheat, Rita D. and Donald G. Morrison (1990), “Assessing Purchase Timing Models: Whether Or Not Is Preferable To When,” Marketing Science, Vol. 9, No. 2, 162-170.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38992-
dc.description.abstract購買時程與購買量的預測具有非常重要的策略涵意。購買時程的預測有助於廠商決定行銷策略的執行時點,購買量的預測是零售商決定舖貨量以及製造商決定產能規劃的依據,二者亦是行銷人員評估行銷策略績效的重要指標。過去的相關研究多半是根據購買數量及購買時程本身的變化,分別建構兩個獨立的行為預測模型。本研究認為購買數量與購買時程之間具有環環相扣的相依關係,乃提出以存貨消耗模型為基礎之整合預測模型。
存貨消耗行為係一無法觀察的潛藏變量,故在文獻上經常以操作型定義的型式做為購買量或購買時程模型的外生解釋變數。然而,此一行為實則是消費者的內生行為,理應會受到存貨消耗當時情境之影響,故本研究認為存貨消耗量不宜被設定為外生變數。因此,本研究另以資料擴充(data augmentation)的觀念將可觀察的購買行為擴充至不可觀察的存貨消耗行為,並以存貨消耗率為參數建立存貨消耗模型,試圖透過層級貝氏模型的理論架構建立購買量和購買時程雙變量之整合預測模型。
為驗證層級貝氏模型的優越性,本研究以平均購買次數、平均存貨消耗率、存貨消耗量變異做為資料模擬的三個因子,交叉構成八個資料模擬情境,並藉此比較層級貝氏估計法與傳統最小平方估計法的參數回復程度與行為預測效度。結果顯示在參數回復程度與購買期間的樣本內預測效度上,層級貝氏估計法皆優於傳統最小平方估計法,這說明了本模型的健全性。本研究再以國內某油品領導品牌各地加油站之購買紀錄為分析對象驗證層級貝氏模型的效度;實證分析顯示購買時點層次的層級貝氏估計元之參數估計能力與行為預測能力最佳。最後,結論與建議彚整各章之研究發現,並說明研究限制與未來研究方向。
zh_TW
dc.description.abstractThe prediction of purchase quantity and timing has very important strategic implications. Purchase quantity prediction can provide a criterion for retailers’ assortment strategy and manufacturers’ production planning; purchase timing prediction can help firms to decide the timing to put strategies in practice. The relationship between marketing strategies and purchase quantity and timing are also important indices to measure marketing performance. The two purchase behaviors were often viewed as independent but not interdependent response variables in previous related literature. This paper attempts to construct a prediction model of the two purchase behaviors based on the concept of the inventory consumption model. However, the inventory consumption behavior of customers is unobservable in nature, so this employed the concept of data augmentation to model this unobservable response variable. Besides, this paper adopted hierarchical Bayesian (HB) approach to combine three analysis levels of models to incorporate each kind of information from data, including the inventory consumption model of unit timing level, the purchase quantity and consumption rate model of purchase timing level, and the marketing effects model of individual customer level.
To examine the relative advantage of hierarchical Bayesian models, this paper formed an eight-scenario simulation analysis to compare the ability of parameter estimation recovery and behavior prediction validity of hierarchical Bayesian (HB) approach to traditional ordinary least square (OLS) approach. The comparison results showed that in each scenario the HB approach had dominant advantage over the traditional OLS approach and this result demonstrated the validity of HB approach. Moreover, we employed the purchase records of every gas station of a domestic leading petroleum brand to investigate the validity of HB approach, and the empirical result also showed that the HB estimators of purchase timing level had the best predictive ability.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T16:56:14Z (GMT). No. of bitstreams: 1
ntu-94-D88724003-1.pdf: 12239366 bytes, checksum: 99f2f7fcec5271d5e7a3a1ab8f777801 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents目 錄
謝詞 ……………………………………………………… 一
中文摘要………………………………………………………… 三
英文摘要………………………………………………………… 四
目錄 ……………………………………………………… 六
表次 ……………………………………………………… 九
圖次 ……………………………………………………… 十
第一章 緒論..……………………………………………… 1
第一節 研究背景與動機…………………………… 1
第二節 研究問題…………………………………… 2
第三節 研究目的…………………………………… 3
第四節 章節架構…………………………………… 5

第二章 文獻探討…………………………………………… 6
第一節 購買行為…………………………………… 6
第二節 購買期間模型……………………………… 8
第三節 購買發生模型……………………………… 16
第四節 存貨消耗行為……………………………… 26
第五節 層級貝氏統計模型………………………… 29
第六節 資料擴充…………………………………… 36
第三章 研究方法…………………………………………… 39
第一節 存貨消耗行為與資料擴充………………… 40
第二節 層級貝氏模型—單位時點層次…………… 44
第三節 層級貝氏模型—購買時點層次…………… 48
第四節 層級貝氏模型—個別顧客層次…………… 54
第五節 純先驗設定………………………………… 60
第六節 模型假設與限制…………………………… 63

第四章 模擬分析…………………………………………… 65
第一節 資料情境假設……………………………… 65
第二節 傳統估計法………………………………… 70
第三節 模型測試指標與設計……………………… 72
第四節 模型測試結果……………………………… 75
第五節 小結………………………………………… 80

第五章 實證分析…………………………………………… 82
第一節 樣本描述…………………………………… 82
第二節 存貨消耗率之估計結果…………………… 88
第三節 樣本預測結果……………………………… 91
第四節 人口統計區隔之購買行為型態…………… 95
第五節 小結………………………………………… 96

第六章 結論與建議………………………………………… 99
第一節 研究結論與發現………………………… 99
第二節 管理意涵………………………………… 100
第三節 研究限制與未來研究方向………………… 101
參考文獻………………………………………………………… 103
附錄 模擬分析之資料產生程式……………………………… 106
dc.language.isozh-TW
dc.subject資料擴充zh_TW
dc.subject存貨消耗模型zh_TW
dc.subject層級貝氏模型zh_TW
dc.subjectHierarchical Bayesian Modelen
dc.subjectInventory Consumption Modelen
dc.subjectData Augmentationen
dc.title購買量與購買時程雙變量之預測-層級貝氏潛藏行為模型之建構zh_TW
dc.titleThe Prediction of Purchase Quantity and Timing: A Latent HB Modelen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree博士
dc.contributor.oralexamcommittee黃恆獎(Heng-Chiang Huang),陳厚銘(Homin Chen),丁承(Cherng G. Ding),周文賢(Wayne S. Chow)
dc.subject.keyword存貨消耗模型,層級貝氏模型,資料擴充,zh_TW
dc.subject.keywordHierarchical Bayesian Model,Data Augmentation,Inventory Consumption Model,en
dc.relation.page109
dc.rights.note有償授權
dc.date.accepted2005-06-06
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept國際企業學研究所zh_TW
顯示於系所單位:國際企業學系

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
11.95 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved