請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38987完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蘇侃 | |
| dc.contributor.author | Chang-Hung Chen | en |
| dc.contributor.author | 陳昶宏 | zh_TW |
| dc.date.accessioned | 2021-06-13T16:55:56Z | - |
| dc.date.available | 2008-07-04 | |
| dc.date.copyright | 2005-07-04 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-06-06 | |
| dc.identifier.citation | 1.Cheng-Chin Li, The Friction Characteristics of Lubricants on Slideways under Low Sliding Speeds and Low Loads, Master Thesis, National Taiwan University, Taipei, 1990.
2.J. Prakash and H. Czichos, Influence of Surface Roughness and Its Orientation on Partial Elastohydrodynamic Lubrication of Rollers, J. Lubrication Technol., Trans. ASME, 105 (1983) 591. 3.B. Ruan, A mixed Lubrication Model of Liquid-gas mechanical face seals, Proquest Dissertations and Theses, (1996). 4.L. Chang, Deterministic Modeling and Numerical Simulation of Lubrication between Rough Surfaces-a Review of Recent Developments, Wear, 184-2 (1995) 155. 5.Z. Y. Jiang, A. K. Tieu, and X. M. Zhang, Finite Element Modelling of Mixed Film Lubrication in Cold Strip Rolling, J. of Materials Processing Tech., 151 (2004) 242. 6.J. R. van Ostayen, A. van Beek, and M. Ros, A Mathematical Model of the Hydro-Support: An Elasto-Hydrostatic Thrust Bearing with Mixed Lubrication, Tribo. Int., 37-8 (2004) 607. 7.T. Hamatake, Y. Wakuri, M. Soejima, and T. Kitahara, Mixed Lubrication Characteristics of Piston Rings, JSAE Review, 17-1 (1996) 92. 8.L. Cheng, A. K. Tieu, Z. Jiang, Modeling of the Inlet Zone in the Mixed Lubrication Situation of Cold Strip Rolling, J. of Materials Processing Tech., 140 (2003) 569. 9.Y. Wang, C. Zhang, Q. J. Wang, and C. Lin, A Mixed-TEHD analysis and experiment of journal bearings under severe operating conditions, Tribo. Int., 35-6 (2002) 395. 10.S. L. Smith, D. Dowson, and A. A. J. Goldsmith, The Lubrication of Metal-on-Metal Total Hip Joints: a Slide Down the Stribeck Curve, J. of Eng. Tribo., 215 (2001) 483. 11.Z. M. Jin, Analysis of Mixed Lubrication Mechanism in Metal-on-Metal Hip Joint Replacements, J. of Eng. Tribo., 216 (2002) 85. 12.S. Jang, and J. A. Tichy, Modelling of Mixed Hydrodynamic and Boundary Lubrication: Layered Structures and Shear Thinning, J. of Eng. Tribo., 212 (1998) 171. 13.P. M. Lugt, R. W. M. Severt, J. Fogelstrom, and J. H. Tripp, Influence of surface topography on friction, film breakdown and running-in in the mixed lubrication regime, J. of Eng. Tribo., 215 (2001) 519. 14.A. O. Lebeck, Mixed Lubrication in Mechanical Face Seals with Plain Faces, J. of Eng. Tribo., 213 (1999) 163. 15.Yu. A. Karpenko and A. Akay, A numerical model of friction between rough surfaces, Tribo. Int. 34 (2001) 531. 16.Y. Z. Hu, H. Wang, W. Z. Wang, and D. Zhu, A Computer Model of Mixed Lubrication in Point Contacts, Tribo. Int., 34-1 (2001) 65. 17.E. R. M. Gelinck, and D. J. Schipper, Calculation of Stribeck curves for line contacts, 33 (2000) 175. 18.R. L. Lenning., The Transition From Boundary to Mixed Friction, Lubrication Engineering, 575 (1960). 19.V. H. Brix, The film lubrication,Lubrication Engineering, 312 (1962). 20.P. W. Kanas, Microasperity Lubrication in a Boundary Lubricated Interface, Masters Thesis, Mechanical Engineering Department, The university of New Mexico, Albuquerque, (1984). 21.J. Lundberg, Influence of Surface Roughness on Normal Sliding Lubrication, Tribo. Int., 28-5 (1995) 317. 22.Jinno, M. R. Tyagi, and Y. Kimura, Influence of Surface Roughness on Friction and Scuffing Behaviour of Cast Iron Under Sparse Lubrication, Tribo. Int., 29-2 (1996) 129. 23.T. S. Yang, Full Film Lubrication of Deep Drawing, Tribo. Int., 32-2 (1999) 89. 24.H. R. Le, and M. P. F. Sutcliffe, Measurements of Friction in Strip Drawing Under Thin Film Lubrication, Tribo. Int., 35-2 (2002) 123. 25.E. Jisheng, and D. T. Gawne, Influence of Lubrication Regime on the Sliding Wear Behaviour of an Alloy Steel, Wear, 211-1 (1997) 1. 26.C. H. Venner, and W. E. ten Napel, Surface Roughness Effects in EHL Line Contact, ASME J. Tribo., 114-4 (1992) 616. 27.D. Dowson, and G. R. Higginson, A numerical Solution to the Elastohydrodynamic Problem, J. Mech. Eng. Sc. 1 (1959) 1. 28.B. J. Hamrock, and D. Dowson, Isothermal Elastohy- drodynamic Lubrication of Point Contacts, PartII-Ellipticity Parameter Results, Trans ASME, J. Lubrication Tech, 98 (1976) 375. 29.Y. Z. Lee, and K. C. Ludema, The Shared-load Wear Model in Lubricated Sliding: Scuffing Criteria and Wear Coefficients, Wear, 138 (1990) 13. 30.B. Jacobson, Thin Film Lubrication of Real Surfaces, Tribo Int, 33 (2000) 205. 31.C. C. Kweh, H. P. Evans, and R. W. Snidle, Micro Elasto- hydrodynamic Lubrication of an Elliptical Contact with Transverse and Three-Dimensional Roughness, ASME J. of Tribo., 111 (1989) 577. 32.L. Chang, and M. N. Webster, A Study of Elastohydrodynamic Lubrication of Roughness Surfaces, ASME J. Tribo., 113 (1991) 110. 33.X. Ai, H. S. Cheng, and L. Zheng, A Transient Model for Micro-Elastohydrodynamic Lubrication with Three Dimen- sional Irregularities, ASME J. of Tribo., 115 (1993) 102. 34.X. Ai, and H. S. Cheng, The Influence of Moving Dent on Point EHL Contacts, STLE Tribo. Trans., 37 (1994) 323. 35.C. H. Venner, and A. A. Lubrecht, Numerical Analysis of the Influence of Waviness on the Film Thickness of a Circular EHL Contact, ASME J. of Trbo., 118 (1996) 153. 36.J. A. Greenwood, and K. L. Johnson, The Behaviour of Transverse Roughness in Sliding Elastohydrodynamically Lubricated Contacts, Wear, 153 (1992) 107. 37.H. P. Evans, R. W. Snidle, A Model for Elastohydrodynamic Film Failure in Contacts Between Rough Surfaces having Transverse Finish, ASME J. of Tribo., 118 (1996) 847. 38.M. Kaneta, T. Sakai, and H. Nishikawa, Effects of Surface Roughness on Point Contact EHL, Tribo. Trans., 36 (1993) 605. 39.M. Kaneta, T. Sakai, and H. Nishikawa, Optical Inter- ferometrical Observations of the Effects of a Bump on Point Contact EHL, ASME J. of Tribo., 114 (1992) 779. 40.L. D. Wedeven, and C. Cusano, Elastohydrodynamic Film Thickness Measurements of Artificially Produced Surface Dents and Grooves, ASLE Trans., 22 (1979) 369. 41.H. Christensen, Stochastic Models for Hydrodynamic Lubrication of Rough Surfaces, Proc. Inst. Mech. Eng., 184(Part 1, 55); (1970) 1013. 42.H. Christensen, and K. Tonder, The Hydrodynamic Lubri- cation of Rough Bearing Surface of Finite Width, ASME J. of Lubrication Tech., 93 (1971) 324. 43.H. G. Elrod, Thin-Film Lubrication Theory for Newtonian Fluids with Surfaces Possessing Striated Roughness or Grooving, ASME J. of Lubrication Tech., 95 (1973) 484. 44.S. K. Rhow, and H. G. Elrod, The Effect on Bearing Load-Carry Capacity of Two-Sided Striated Roughness, ASME J. of Lubrication Tech., 96 (1974) 554. 45.N. Patir and H. S. Cheng, Application of Average Flow Model to Lubrication Between Rough Sliding Surfaces, ASME J. of Lubrication Tech., 101-4 (1979) 220. 46.N. Patir and H. S. Cheng, An Average Flow Model for Determining Effects of Three-Dimensional Roughness on Partial Hydrodynamic Lubrication, ASME J. Lubr. Technol., 100 (1978) 12. 47.P. I. Andharia, J. L. Gupta, and G. M. Deheri, Effect of Roughness on Hydrodynamic Lubrication of Slider Bearings, Tribo. Trans 44-2 (2002) 291. 48.S. Harp, and R. Salant, An Average Flow Model of Rough Surface Lubrication with Inter-Asperity Cavitation, ASME J. Tribol., 123 (2001) 134. 49.N. B. Naduvinamani, S. Tasneem Fathima, and P. S. Hiremath, Effect of Surface Roughness on Characteristics of Couplestress Squeeze Film Between Anisotropic Porous Rectangular Plates, Fluid Dynamic Research, 32-5 (2003) 217. 50.N. B. Naduvinamani, P. S. Hiremath, and G. Gurubasavaraj, Effect of Surface Roughness on the Couple-Stress Squeeze Film Between a Sphere and a Flat Plate, Tribo. Int., 38-5 (2005) 451. 51.J. Prakash, and K. Tiwari, Roughness Effects in Porous Circular Squeeze-Plates With Arbitrary Wall Thickness, J. Lubri. Tech., 105 (1983) 90. 52.K. Gururajan, and J. Prakash, Surface Roughness Effects in Infinitely Long Porous Journal Bearings, J. Tribo., 121 (1999) 139. 53.A. A. Lubrecht, W. E. Ten Napel and R. Bosma, The Influence of Longitudinal and Transverse Roughness on the Elasto- hydrodynamic Lubrication of Circular Contacts, ASME J. Tribo., 110 (1988) 421. 54.X. Ai, and H. S. Cheng, The Effects of Surface Texture on EHL Point Contacts, ASME J. Tribo., 118 (1996) 59. 55.C. C. Kweh, M. J. Patchong, H. P. Evans and R. W. Snidle, Simulation of Elastohydrodynamic Contacts Between Rough Surfaces, ASME J. Tribo., 114 (1992) 412. 56.F. Shi and R. F. Slant, A Mixed Soft Elastohydrodynamic Lubrication Model with Interasperity Cavitation and Surface Deformation, ASME J. Tribo., 122 (2000) 308. 57.D. Zhu, and X. Ai, Point Contact EHL Base on Optically Measured Three-Dimensional Rough Surface, ASME J. Tribo., 119 (1997) 375. 58.D. Zhu and Y. Z. Hu, A Computer Program Package for the Prediction of EHL and Mixed Lubrication Characteristics, Friction, Subsurface Stresses and Flash Temperatures Based on Measured 3-D Surface Roughness, Tribo. Trans., 44 (2001) 383. 59.D. Zhu, and Y. Z. Hu, Effects of Rough Surface Topography and Orientation on the Characteristics of EHD and Mixed Lubrication in Both Circular and Elliptical Contacts, Tribol, Trans., 44 (2001) 391. 60.L. Chang, A Deterministic Model for Line-Contact Partial Elastohydrodynamic Lubrication, Tribol. Int., 28-2 (1995) 75. 61.N. B. Naduvinamani, P. S. Hiremath, and G. Gurubasavaraj, Surface Roughness Effects in a Short Porous Journal Bearing with a Couple Stress Fluid, Fluid Dynamics Research, 31 (2002) 333. 62.P. Kumar, S. C. Jain, and S. Ray, Study of Surface Roughness Effects in Elastohydrodynamic Lubrication of Rolling Line Contacts Using a Deterministic Model, Tribo Int, 34 (2001) 713. 63.X. Jiang, H. S. Cheng and D. Y. Hua, A Theoretical Analysis of Mixed Lubrication by Macro Micro Approach: Part I-Results in a Gear Surface Contact, Tribo. Trans., 43 (2000) 689. 64.D. Zhu, H. S. Cheng, T. Arai, and K. Hamai, A Numerical Analysis for Piston Skirt in Mixed Lubrication-Part I:Basic Modeling, ASME J. Tribo., 114 (1992) 553. 65.F. Shi, and Q. Wang, A Mixed-TEHD Model for Journal Bearing Conformal Contacts, Part I:Model Formulation and Approximation of Heat Transfer Contacts, ASME J. Tribol., 120 (1998) 198. 66.Y. Wang, Q. Wang, and L. Chih, Mixed Lubrication of Coupled Journal-Trust Bearing Systems, Tribol. Int., 35 (2002) 395. 67.Q. Wang, and H. S. Cheng, A Mixed Lubrication Model for Journal Bearings with a Soft Coating, Part I:Contact and Lubrication Analysis, Tribol., Trans., 38 (1995) 645. 68.K. Steinhoff, W. Rasp, and O. Pawelski, Development of Deterministic-Stochastic Surface Structures to Improve the Tribological Conditions of Sheet Forming Processes, Journal of Materials Processing Technology, 60-1 (1996) 355. 69.W. R. D. Wilson, Mixed Lubrication in Metal Forming, Advanced Technology of Plasticity, Japanese Society of Technical of Plasticity, (1990)1667. 70.S. W. Lo, W. R. D. Wilson, A Theoretical Model of Micro- Pool Lubrication in Metal Forming, J. of Tribo., 121 (1999) 731. 71.P. K. Saha, W. R. D. Wilson, and R. S. Timsit, Influence of Surface Topography on the Friction Characteristics of 3104 Aluminum Alloy Sheet., Wear, 197 (1996) 123. 72.Q. Wang, F. Shi, and S. C. Lee, A mixed-Lubrication Study of Journal Bearing Conformal Contacts, Transactions of the ASME, 119 (1997) 456. 73.J. Katoh, T. Satoh, F. Kamikubo, and K. Mizuhara, Analysis of Running-in Process under Lubricated Conditions Using Combined Time-Space Plot and Three Dimensional Bearing Curves,Tribology Transactions, 44 (2001) 104. 74.T. Makino, S. Morohoshi, and K. Saki, The Effect of Roughness Orientation on Mixed Friction, Proc.25 th Leeds- Lyon Symp. on Tribology (1998) 355. 75.A.O. Lebeck, J. Tribology, Parallel Sliding Load Support in the Mixed Friction Regime, Part I-The Experiment Data, Trans. ASME, 109 (1987) 189. 76.A.O. Lebeck, J. Tribology, Parallel Sliding Load Support in the Mixed Friction Regime, Part II-Evaluation of the Mechanisms, Trans. ASME, 109 (1987) 196. 77.C.M.M. Ettles and A. Cameron, The Action of the Parallel Surface Trust Bearing, Proc. IME., 180 Part 3k (1966) 177. 78.R. L. Jackson and I. Green, Study of the Tribological Behavior of a Thrust Washer Bearing, Tribo. Trans., STLE, 44 (2001) 504. 79.E. Felder and V. Samper, Experimental Study and Theoretical interpretation of the frictional mechanisms in steel sheet forming, Wear, 178 (1994) 85. 80.X. Jiang, H.S. Cheng and D.Y. Hua, A Theoretical Analysis of Mixed Lubrication by Macro Micro Approach: Part I-Results in a Gear Surface Contact, Tribo. Trans., 43 (2000) 689. 81.Q. J. Wang, D. Zhu, H.S. Cheng, T.H. Yu, X.F. Jiang and S.B. Liu, Mixed Lubrication Analyses by a Macro-Micro Approach and a Full-Scale Mixed EHL Model, J. Tribology, 126 (2004) 81. 82.J. A. Tichy, A Surface Layer Model for Thin Film Lubrication, Tribology Trans. 38 (1995) 577. 83.K. Tønder, Hydrodynamic effects of tailored inlet roughnesses: extended theory, Tribo. Int., 37 (2004) 137. 84.P. L. Wong, P. Huang, W. Wang and Z. Zhang, Effect of geometry change of rough point contact due to lubricated sliding wear on lubrication, Tribo. letters 5 (1998) 265. 85.W. Wang, P. L. Wong, and F. Guo, Application of partial elastohydrodynamic lubrication analysis in dynamic wear study for running-in, Wear, 257 (2004) 823. 86.I. Nogueira, A.M. Dias, R. Gras and R. Progri, An experimental model for mixed friction during running-in, Wear, 253 (2002) 541. 87.A. Fogg, Fluid Film Lubrication of Parallel Trust Surfaces, Proceedings of the Institution of Mechanical Enginners, 155 (1946) 49. 88.A. Cameron, The Principles of Lubrication, Longmans Green and Co. Ltd., London, (1966). 89.E. C. Kuhn and C. C. Yates, Fluid Inertia Effect on the Film Pressure Between Axially Oscillating Parallel Circular Plates, ASLE Trans., 7 (1964) 299. 90.J. J. Kauziarich, Hydraulic Squeeze Bearing, ASLE Trans. 15 (1972) 37. 91.P. E. Fowles, The Application of Elastohydrodynamic Lubrication Theory to Individual Asperity-Asperity Collisions, ASME J. of Lubrication Tech., (1969) 464. 92.P. E. Fowles, The Statistical Application of a Thermal EHL Theory for Individual Asperity-Asperity Collisions to the Sliding Contact of Rough Surfaces, ASME J. of Lubrication Tech., (1975) 311. 93.R. L. Lenning, From Boundary to Mixed Friction, Lubrication Engineering, (1960) 575. 94.D. B. Hamilton, J. A. Walowit and C.M. Allen, A Theory of Lubrication by Microirregularies, ASME J. of Basic Engineering, (1966) 177. 95.Y. H. Tsao and K. N. Tong, A Model for Mixed Lubrication, ASLE Trans., 18 (1975) 90. 96.H. So and R. C. Lin, The combined effects of ZDDP, surface texture and hardness on the running-in of ferrous metals, Tribo. Int., 32 (1999) 243. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38987 | - |
| dc.description.abstract | 混合潤滑在一般實際應用場合上是普遍存在的一種潤滑方式,因同時牽涉到液膜潤滑與粗糙峰接觸的問題,但截至目前為止尚未有一個較為完整的潤滑模型能夠應用在混合潤滑方面所遭遇到的問題。尤其是有關於平行滑動面在某特定條件下產生液動效果的原因不明。因此本研究從微觀的觀點出發,探討粗糙峰在混合潤滑中的潤滑機制及其所造成的影響,最後並模型化其潤滑機制,建立起混合潤滑模型。藉由此混合潤滑模型,我們可以用來預測其液膜支撐力及摩擦係數,並藉由摩擦係數的預測來幫助我們準確的判斷其潤滑狀態。由本研究的結果可以歸納出以下幾點結論 :
(1)平行滑動面之所以能夠產生液動支撐力的原因在兩平行面間之表面粗糙峰,在較小的表面粗度及配合適當的紋路方向時,能夠產生有效的微楔形,它能夠產生顯著的液動壓來支撐負載,並降低摩擦係數。 (2)液動支撐力的關鍵除了滑動速度、黏度、正向負載、表面粗度,以及表面紋路方向之外,另一個最重要的影響因數便是表面間距。當表面間距較大時,所產生的液動支撐力較小,當表面間距較小時,所產生的液動支撐力較大,此一間距是由兩滑動接觸表面間最高粗糙峰所決定,此一間距直接決定微楔形的最小間距並進而影響液動效應。 (3)滑動面為橫向紋路時,當某特定條件下可以產生液動支撐力,但液動支撐力有其極限,當正向壓力較大時,橫向紋路所產生的液動力便無法有效承擔正向負載。 (4)本研究利用斜襯墊軸承理論應用於計算粗糙峰所產生之液動支撐力,微楔型理論模型的特點在於從粗糙峰所產生的液動力為主,避免了粗糙峰接觸時複雜的假設及計算,有別於一般直接計算粗糙峰接觸應力為出發點的混合潤滑模型。 | zh_TW |
| dc.description.abstract | In engineering practice, mixed lubrication is easily found in many operation cases. Because of the coexistence of hydrodynamic film and asperity interaction, up to now, it seems to be lacking a realistic model applied to solve problems in mixed lubrication, especially the reason for generating hydrodynamic pressure between two parallel surfaces was still not clear, and the mechanism of lubrication often fails to grasp . From the macro-micro approach, the purpose of this study is to investigate the mechanism of lubrication formed by asperity, and the effects caused by the asperity in the mixed lubrication. Finally, this thesis is going to establish a mixed lubrication model to predict the hydrodynamic load carrying capacity and friction coefficient. From this model, we can determine the status of lubrication more accurately. The following conclusions are obtained in this study:
(1) The main factor that hydrodynamic pressures generated between two parallel surfaces under parallel sliding in the mixed lubrication regime is the surface roughness. When the surfaces that are smooth with suitable lay directions can form effective micro-wedges, which definitely contribute significant hydrodynamic load carrying capacity to the sliding pair and lower the friction coefficient. (2) Besides the sliding speed、viscosity of lubricant、nominal pressure 、surface roughness and lay direction, the key point of the hydrodynamic load carrying capacity is the gap between the two contact surfaces. The minimum gaps or the minimum fluid film thicknesses in micro-wedges not only depend upon the heights of interacting asperities, but also upon the heights of the highest asperities on the two contact surfaces. When the gap is wide, the hydrodynamic effect is small, so as the load carrying capacity. On the contrary, when the gap is narrow, they can provide a significant hydrodynamic effect and significant load carrying capacity. (3) Although surfaces roughness is in transverse lay direction, it can produce hydrodynamic effect in some particular lubrication conditions when the nominal pressure is sufficiently high, the hydrodynamic pressure may not be sufficiently high to support the normal load. (4) The study employed the simple theory of tilting-pad bearing to confirm that the micro-wedges do really create substantial hydrodynamic pressure. The micro-wedge model is a new approach and different from the most mixed lubrication model, especially the new model avoided the complicated assumptions about the asperity contact stress problems. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T16:55:56Z (GMT). No. of bitstreams: 1 ntu-94-D87522017-1.pdf: 9306593 bytes, checksum: 9755eb44e9572384753d79f566cbbbed (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | 第一章 緒論
1-1 研究動機…………………………………………….1 1-2 文獻回顧……………………………………….5 1-3模型構想與簡介……………………………….10 1-4論文架構…………………………………………….11 第二章 流體潤滑理論與表面接觸問題 2-1 潤滑模式與界定…………………………………..13 2-1-1 液動潤滑…………………………………………15 2-1-2 彈液動潤滑………………………………………21 2-1-3 混合潤滑…………………………………………22 2-1-4 邊界潤滑…………………………………………23 2-2潤滑理論回顧……………………………………….24 2-2-1 高壓下逆應面接觸理論…………………………24 2-2-2 平均流理論………………………………………26 2-3 微觀下表面型態與表面接觸……………………..28 2-3-1 表面型態的統計參數與機率分布………………28 2-3-2 表面粗糙峰的接觸行為…………………………30 2-4 平行滑動面之潤滑機制…………………………..33 2-4-1 熱楔形理論………………………………………33 2-4-2 黏度楔形理論……………………………………34 2-4-3 Squeeze Film理論………………………………34 2-4-4 粗糙峰碰觸理論…………………………………35 2-4-5 微粗糙峰潤滑理論………………………………36 第三章 實驗設備與方法 3-1 實驗設備…………………………………………..37 3-1-1 實驗平台…………………………………………37 3-1-2 分析檢測儀器……………………………………41 3-2 試片規格…………………………………………..42 3-3 潤滑劑種類………………………………………..43 3-4 實驗測試條件……………………………………..44 3-5 實驗步驟與方法…………………………………..45 第四章 實驗結果與討論 4-1實驗結果…………………………………………….51 4-1-1 Stribeck曲線……………………………………51 4-1-2 表面粗度對摩擦係數的影響……………………53 4-1-3 表面紋路對摩擦係數的影響……………………55 4-1-4 潤滑劑黏度的影響………………………………58 4-1-5 相對滑動速度的影響……………………………60 4-1-6正向負載的影響………………………………….62 4-2實驗分析…………………………………………….64 4-2-1使用EP添加劑之實驗證據……………………….63 4-2-2 微楔形的觀念……………………………………66 第五章 理論模型之建立 5-1微楔型理論之模型化……………………………….69 5-1-1 表面間距模型化…………………………………70 5-1-2 摩擦力模型化……………………………………74 5-1-3計算過程………………………………………….75 5-2微楔型理論之分析………………………………….77 5-2-1粗糙峰之統計圖………………………………….76 5-2-2液動力之分析…………………………………….79 5-2-3摩擦力之分析…………………………………….81 5-3數學統計模式之建立……………………………….84 5-4 平均間距與粗度參數之關係..................90 第六章 結論與建議 6-1結論………………………………………………….92 6-2 未來研究方向與建議……………………………..95 參考文獻………………………………………………..96 表……………………………………………………...109 圖...........................................113 | |
| dc.language.iso | zh-TW | |
| dc.subject | 摩擦力 | zh_TW |
| dc.subject | 混合潤滑 | zh_TW |
| dc.subject | 粗糙峰 | zh_TW |
| dc.subject | 微楔形 | zh_TW |
| dc.subject | 表面間距 | zh_TW |
| dc.subject | Friction | en |
| dc.subject | Asperity | en |
| dc.subject | Micro-Wegde | en |
| dc.subject | Mixed Lubrication | en |
| dc.subject | Gap | en |
| dc.title | 粗糙峰所構成之微楔形在混合潤滑之效應 | zh_TW |
| dc.title | Effects of Micro-Wedges Formed by Asperities on Mixed Lubrication | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 林仁輝,羅斯維,鄭友仁,林原慶,陳炳輝 | |
| dc.subject.keyword | 粗糙峰,微楔形,表面間距,摩擦力,混合潤滑, | zh_TW |
| dc.subject.keyword | Asperity,Micro-Wegde,Mixed Lubrication,Gap,Friction, | en |
| dc.relation.page | 180 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-06-07 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 9.09 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
