Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 財務金融學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38965
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蘇永成(Yong-Chern Su)
dc.contributor.authorLing-Chin Kaoen
dc.contributor.author高綾璟zh_TW
dc.date.accessioned2021-06-13T16:54:49Z-
dc.date.available2006-01-01
dc.date.copyright2005-07-04
dc.date.issued2005
dc.date.submitted2005-06-12
dc.identifier.citationReferences-
1.Andersen Torben G, Bollerslev ,Tim, Christoffersen. Peter F. and Peter F, Francis X. (January,2005).Practical Volatility and Correlation Modeling for Financial Market Risk Management. NBER Working Paper Series, 11069.
2.Basel I International convergence of capital measurement and capital standards. (July 1988). Bank for International Settlement..
3.Basel II International Convergence of Capital Measurement and Capital Standards a Revised Framework (June 2004). Bank for International Settlement,
4.Berkowita Jeremy and Tames O’ Brien (2002), How Accurate Are Value- at- Risk Models at Commerial Banks ? Journal of Finance, 57, 1093-1112
5.Bollerslev, T. (1986). Generalized Autoregressive Conditional Heteroskedasticity. Journal of Econometrics, 31, 307–327
6.Burns Patrick, October ,(2002) The Quality of Value at Risk via Univariate GARCH. Burns Statistic Working Paper
7.Christoffersen Peter, Hahn Jinyong, and Atsushi Inoue,(October 1999). Testing, Comparing, and Combining Value-at-Risk Measures.
8.Christoffersen Peter F. and Diebold Francis X (July ,1999). How Relevant Is Volatility Forecasting for Financial Risk Management
9.Chiang,(2004) Modeling Value at Risk of Financial Companies-A Comparison of Symmetric and Asymmetric Models
10.Degiannakis Stavros, Xekalaki Evdokia .Autoregressive Conditional Heteroscedasticity (ARCH) Models: A Review. www.gloriamundi.org/
11.Engle, R.F. (1982). Autoregressive Conditional Heteroskedasticity with Estimates of the Variance of U.K. Inflation. Econometrica, 50, 987–1008
12.Engle, R.F., D.M. Lilien and R.P. Robins (1987). Estimating Time Varying Risk Premia in the Term Structure: The ARCH-M Model. Econometrica, 55, 391–407
13.Engle, R.F. and V.K. Ng (1993). Measuring and Testing the Impact of News on Volatility. Journal of Finance, 48, 1749-1778
14.Engle, R.F and Manganelli Simone, (August 2001). Value at Risk Models in Finance. European Central Bank Working Paper Series, NO 75.
15.Hentschel ,Ludger,(1995).All in the family Nesting symmetric and asymmetric GARCH models Journal of Financial Economics39, 71-104
16.Nelson, D. (1991). Conditional Heteroskedasticity in Asset Returns: A New Approach. Econometrica, 59, 347-370
17.Overview of the amendment to the capital accord to incorporate market risks (January 1996). Bank for International Settlement
18.Schwert, G. William (December 1999) .Why Does Stock Market Volatility Change Over Time. Journal of Finance, 44, 1115-1153
19.Supervisory framework for the use of backtestingin conjunction with the internal models approach to market risk capital requirements. (January 1996). Bank for International Settlement
20.Wang, Serena (2003). Market Risk VaR Models for Financial Holding Company.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38965-
dc.description.abstract本研究檢驗兩種不對稱GARCH模型,旋轉效果的EGARCH 模型和平移效果的NA-GARCH 模型在VaR 預測值上的表現。報酬結構上亦有ARMA(1,1) ,AR(1), MA(1) ,即“in –mean”模型的變化。我們分別模擬A 、B兩個資產組合代表台灣的兩家金控公司,針對216個樣本點,在99 % 和95 % 的信心水準下,VaR 預測值的檢測以損失的超出次數為基準,配合其他指標如VaR 平均值,平均損失、累積損失、最大損失以期達到模型的有效性及資本提列的效率性。本研究的主要發現如下 :
1.所有的VaR 預測模型都小於預定的超出次數,除ARMA(1,1) 在 99% 信心水準下以外,因此可視為合格的內部VaR市場風險模型。
2.ARMA(1,1) 模型雖然和真實的P & L有相似的波動趨勢,但遞延一期的效果卻造成更大的損失超出次數;此外,過大的波動幅度疑為過度配置下的結果。
3.在既定的模擬組合和觀測時間下,無法產生單一最佳的VaR預測模型,亦無法辨別是為旋轉或平移的不對稱效果主導市場的報酬波動變化。
zh_TW
dc.description.abstractIn this paper, we employ EGARCH ,representing rotation asymmetry effect, and NA-GARCH, representing shift asymmetry effect, with variations in their mean equations : ARMA(1,1) ,AR(1), MA(1) ,and “ in –mean” models as VaR forecast models. Forward testing of one day-ahead VaR performance under 99 % and 95 % confidence levels is evaluated with realized P &L for 216 observations in two simulated portfolios standing for financial holdings in Taiwan. Based on violation number, we also consider other performance indicators such as mean VaR, aggregate, mean and max violation to strike a balance between model effectiveness and capital charge efficiency. The main findings are as follows:
1.All the VaR forecast models, except for ARMA(1,1) under 99%, in EGARCH and NA-GARCH achieve the targeted violation rate and can be viewed as qualified internal models for banks.
2.ARMA(1,1) models have almost the same volatile trend as real P& L time series, yet the one day lag makes more violations. In addition, the excessive volatility is the implication of overfitting problem.
3.No particular VaR model can distinctively outperform others and serves as the best-fitting model, nor can we tell the shift or the rotation asymmetric effect dominates the portfolios during the observation period.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T16:54:49Z (GMT). No. of bitstreams: 1
ntu-94-R92723005-1.pdf: 866092 bytes, checksum: ce73ac9536e62198c171bcdfa31b442e (MD5)
Previous issue date: 2005
en
dc.description.tableofcontentsCHAPTER 1 INTRODUCTION 1
1.1 MOTIVATION 1
1.2 PURPOSES 2
1.3 FRAMEWORK 2
CHAPTER 2 RISK MANAGEMENT OF BASLE 3
2.1 THE BASLE COMMITTEE 3
2.2 1988 BASLE ACCORD 4
2.3 1996 AMENDMENTS 5
2.4 BASLE II- THE NEW BASLE CAPITAL ACCORD 6
CHAPTER 3 LITERATURE REVIEW 8
3.1 VaR 8
3.2 VOLATILITY MODELING WITH GARCH EFFECT 9
3.3 RELATED LITERATURES 12
CHAPTER 4 DATA 15
4.1 PORTFOLIO ASSUMPTIONS 15
4.2 PORTFOLIO FORMALIZATION 16
4.3 DATA PERIOD 18
CHAPTER 5 METHODOLOGY 19
5.1 VaR MODELS 19
5.1.1 EGARCH Model 19
5.1.2 NA-GARCH Model 20
5.1.3 Creation of VaR models 21
5.2 TESTING MODEL PERFORMANCE 22


CHAPTER 6 EMPIRICAL RESULTS 24
6.1 TIME SERIES PATTERN OF DAILY P & L 24
6.2 TESTING RESULTS OF VAR MODELS 24
6.2.1 Various VaR models 25
6.2.2 EGARCH vs. NA-GARCH Model Comparisons 26
CHAPTER 7 CONCLUSIONS 27
7.1 MAIN FINDINGS 27
7.2 SUGGESTIONS 28
REFERENCES- 30
dc.language.isoen
dc.subject非對稱GARCH模型zh_TW
dc.subject風險值zh_TW
dc.subject市場風險zh_TW
dc.subjectGARCHen
dc.subjectasymmetry effecten
dc.subjectVaRen
dc.subjectNA-GARCHen
dc.titleNA-GARCH模型於金融控股公司市場風險值之研究zh_TW
dc.titleNA-GARCH Model in Value-at-Risk of Financial Holdingsen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee胡星陽,王耀輝
dc.subject.keyword市場風險,風險值,非對稱GARCH模型,zh_TW
dc.subject.keywordNA-GARCH,GARCH,VaR,asymmetry effect,en
dc.relation.page65
dc.rights.note有償授權
dc.date.accepted2005-06-13
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept財務金融學研究所zh_TW
顯示於系所單位:財務金融學系

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
845.79 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved