請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3892完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 謝銘鈞 | |
| dc.contributor.author | Pei-Chi Lee | en |
| dc.contributor.author | 李佩芝 | zh_TW |
| dc.date.accessioned | 2021-05-13T08:38:07Z | - |
| dc.date.available | 2019-09-13 | |
| dc.date.available | 2021-05-13T08:38:07Z | - |
| dc.date.copyright | 2016-09-13 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-07-15 | |
| dc.identifier.citation | Reference
[1] Y. Matsumura, H. Maeda, A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs, Cancer Res. 46 (1986) 6387–6392. [2] H. Maeda, Tumor-selective delivery of macromolecular drugs via the EPR effect: background and future prospects, Bioconjugate Chem. 21 (2010) 797–802. [3] S. Lee, H. Koo, J.H. Na, S.J. Han, H.S. Min, S.J. Lee, S.H. Kim, S.H. Yun, S.Y. Jeong, I.C. Kwon, K. Choi, K. Kim, Chemical Tumor-targeting of nanoparticles based on metabolic glycoengineering and click chemistry, ACS Nano 8 (2014) 2048-2063. [4] Y. Zhong, F. Meng, C. Deng, Z. Zhong, Ligand-directed active tumor-targeting polymeric nanoparticles for cancer chemotherapy, Biomacromolecules 15 (2014) 1955-1969. [5] K. Sano, T. Nakajima, P.L. Choyke, H.Kobayashi, Markedly enhanced permeability and retention effects induced by photo-immunotherapy of tumors, ACS Nano 7 (2013) 717-724. [6] T. Stylianopoulos, EPR-effect: utilizing size-dependent nanoparticle delivery to solid tumors, Ther. Deliv. 4 (2013) 421-423. [7] M. Marty, G. Sersa, J.R. Garbay, J. Gehl, C. G. Collins, M. Snoj, V. Billard, P. F. Geertsen, J. O. Larkin, D. Miklavcic, I. Pavlovic, S. M. Paulin-Kosir, M. Cemazar, N. Morsli, D. M. Soden, Z. Rudolf, C. Robert, G. C. O’Sullivan, L. M. Mir, Electrochemotherapy - an easy, highly effective and safe treatment of cutaneous and subcutaneous metastases: results of ESOPE (european standard operating procedures of electrochemotherapy) Study, E.J.C. Supplements. 4 (2006) 3–13. [8] D. Miklavčič, G. Serša, E. Brecelj, J. Gehl, D. Soden, G. Bianchi, P. Ruggieri, C.R. Rossi, L.G. Campana, T. Jarm, Electrochemotherapy: technological advancements for efficient electroporation-based treatment of internal tumors, Med. Biol. Eng. Comput. 50 (2012) 1213–1225. [9] J. Gehl, Electroporation: theory and methods, perspectives for drug delivery, gene therapy and research, Acta. Physiol. Scand. 177 (2003) 437-447. [10] S. Gintautas, Pore disappearance in a cell after electroporation: theoretical simulation and comparison with experiments, Biophys. J. 73 (1997) 1299-1309. [11] J. Lekner, Electroporation in cancer therapy without insertion of electrodes, Phys. Med. Biol. 59 (2014) 6031-6042. [12] E. Neumann, S. Kakorin, K. Toensing, Fundamentals of electroporative delivery of drugs and genes, Bioelectrochem. Bioenerg. 48 (1999) 3-16. [13] E. Neumann, R. M. Schaefer, Y. Wang, P. H. Hofschneider, Gene transfer into mouse lyoma cells by electroporation in high electric fields, EMBO J. 1 (1982) 841–845. [14] A. V. Titomirov, S. Sukharev, E. Kistanova, Biochim. In vivo electroporation and stable transformation of skin cells of newborn mice by plasmid DNA, Biophys. Acta. 1088 (1991) 131–134. [15] M. Cemazar, M. Golzio, G. Sersa, P. Hojman, S. Kranjc, S. Mesojednik, M. P. Rols, J. Teissie, Control by pulse parameters of DNA electrotransfer into solid tumors in mice, Gene. Ther. 16 (2009) 635–644. [16] L. C. Heller, R. Heller, In vivo electroporation for gene therapy, Hum. Gene. Ther. 17 (2006) 890–897. [17] G. J. Prud’homme, Y. Glinka, A. S. Khan, R. Draghia-Akli, Electroporation-enhanced nonviral gene transfer for the prevention or treatment of immunological, endocrine and neoplastic diseases, Curr. Gene. Ther. 6 (2006) 243–273. [18] L. G. Camapana, S. Mocellin, M. Basso, O. Puccetti, G. L. De Salvo, S. V. Chiarion, A. Vecchiato, L. Corti, C. R. Rossi, D. Nitti, Bleomycin-based electrochemotherapy: clinical outcome from a single institution's experience with 52 patients, Ann. Surg. Oncol. 16 (2009) 191-199. [19] J. Gehl, G. Serša, J. R. Garbay, D. Soden, Z. Rudolf, M. Marty, G. C. O'Sullivan, P. F. Geertsen, L. M. Mir, Results of the ESOPE (european standard operating procedures on electrochemotherapy) study: efficient, highly tolerable and simple palliative treatment of cutaneous and subcutaneous metastases from cancers of any histology, J. Clin. Oncol. 24 (Suppl) (2006) s8047. [20] M. P. Rols, Y. Tamzali, J. Teissié, Electrochemotherapy of horses. A preliminary clinical report, Bioelectrochemistry 55 (2002) 101-105. [21] S. Satkauskas, D. Batiuskaite, D. S. Salomskaite, M. S. Venslauskas, Effectiveness of tumor electrochemotherapy as a function of electric pulse strength and duration, Bioelectrochemistry 65 (2005) 105-111. [22] U. Pliquett, R. Elez, A. Piiper, E. Neumann, Electroporation of subcutaneous mouse tumors by rectangular and trapezium high voltage pulses, Bioelectrochemistry 62 (2004) 83-93. [23] M. Belehradek, C. Domenge, B. Luboinski, S. Orlowski, J. J. Belehradek, L.M. Mir, Electrochemotherapy, a new antitumor treatment. First clinical phase i-ii trial, Cancer 72 (1993) 3694-3700. [24] G. Schmidt, B. I Juhasz, E.F. Solomayer, D.Herr, Electrochemotherapy in breast cancer: a review of references, Geburtshilfe Frauenheilkd 74 (2014) 557-562. [25] M. Lluis, J. Gehl, G. Sersa, C. G. Collins, J. R. Garbay, V. Billard, P. F. Geertsen, Z. Rudolf, G. C. O’Sullivan, M. Martyet, Standard operating procedures of the electrochemotherapy: instructions for the use of bleomycin or cisplatin administered either systemically or locally and electric pulses delivered by the cliniporator™ by means of invasive or non-invasive electrodes, E.J.C. 4 (Suppl) (2006)14–25. [26] G. Sersa, D. Miklavcic, Electrochemotherapy of tumours, J. Vis. Exp. 22 (2008) 1038. [27] V. Kasivisvanathan, A. Thapar, Y. Oskrochi, J. Picard, E. L. S. Leen, Irreversible electroporation for focal ablation at the porta hepatis, Cardiovasc. Intervent. Radiol. 35 (2012) 1531-1534. [28] A. T. Esser, K. C. Smith, T. R. Gowrishankar, J. C. Weaver, Towards solid tumor treatment by irreversible electroporation: intrinsic redistribution of fields and currents in tissue, Technol. Cancer. Res. Treat. 6 (2007) 261–274. [29] N. W. Kam, M. O'Connell, J. A. Wisdom, H. Dai, Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction, Proc. Natl. Acad. Sci. U.S.A. 102 (2005) 11600-11605. [30] A. M. Smith, M. C. Mancini, S. Nie, Bioimaging: second window for in vivo imaging, Nat. Nanotechnol. 4 (2009) 710-711. [31] A. D. L. Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T. J. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, S. S. Gambhir, Carbon nanotubes as photoacoustic molecular imaging agents in living mice, Nat. Nanotechnol. 3 (2008) 557-562. [32] M. Shim, N. W. S. Kam, R. J. Chen, Y. Li, H. Dai, Functionalization of carbon nanotubes for biocompatibility and biomolecular recognition, Nano. Lett. 2 (2002) 285-288. [33] J. E. Podesta, K. T. Al-Jamal, M. A. Herrero, B. Tian, H. Ali-Boucetta, V. Hegde, A. Bianco, M. Prato, K. Kostarelos, Antitumor activity and prolonged survival by carbon-nanotube-mediated therapeutic sirna silencing in a human lung xenograft model, Small 5 (2009) 1176-118. [34] L. Lacerda, S. Raffa, M. Prato, A. Bianco, K. Kostarelos, Cell-penetrating CNTs for delivery of therapeutics, Nano Today 2 (2007) 38-43. [35] P. C. Lee, Y. C. Chiou, J. M. Wong, C. L. Peng, M. J. Shieh, Targeting colorectal cancer cells with single-walled carbon nanotubes conjugated to anticancer agent SN-38 and EGFR antibody, Biomaterials 34 (2013) 8756-8765. [36] R. Saito, G. Dresselhaus, M. S. Dresselhaus, Physical properties of carbon nanotube, Imperial College Press. London, 2010, pp. 1-29. [37] B. Kozinsky, N. Marzari, Static dielectric properties of carbon nanotubes from first principles, Phys. Rev. Lett. 96 (2006) 166801. [38] C. J. A. Rojas, D. M. A. Correa, Z. Ren, K. Kempa, M. Giersig, Enhanced introduction of gold nanoparticles into vital acidothiobacillus ferrooxidans by carbon nanotube-based microwave electroporation, Nano. Lett. 4 (2004) 985-988. [39] S. B. Grigory, V. E. Alexander, Theory of carbon nanotube (CNT)-based electron field emitters, Nanomaterials 3 (2013) 393-442. [40] D. Cai, D. Blair, F. J. Dufort, M. R. Gumina, Z. Huang, G. Hong, W. Dean, D. Canahan, K. Kempa, Z. F. Ren, T. C. Chiles, Interaction between carbon nanotubes and mammalian cells: characterization by flowcytometry and application, Nanotechnology 19 (2008) 1-10. [41] V. Raffa, G. Ciofani, O. Vittorio, V. Pensabene, A. Cuschieri, Carbon nanotube-enhanced cell electropermeabilisation, Bioelectrochemistry 79 (2010) 136-141. [42] M. Shahini, J. T. Yeow, Cell electroporation by CNT-featured microfluidic chip, Lab. Chip. 13 (2013) 2585-2590. [43] L. Wang, D. Liu, R. Zhou, Z. Wang, A. Cuschieri, Tumour Cell Membrane Poration and Ablation by Pulsed Low-Intensity Electric Field with Carbon Nanotubes, Int. J. Mol. Sci. 16 (2015) 6890–6901. [44] Z. Liu, A.C. Fan, K. Rakhra, S. Sherlock, A. Goodwin, X. Chen, Q. Yang, D.W. Felsher, H. Dai, Supramolecular stacking of doxorubicin on carbon nanotubes for in vivo cancer therapy. Angew. Chem. Int. Ed. Engl. 48 (2009) 7668-72. [45] C. W. James, Electroporation: a general phenomenon for manipulating cells and tissues, J. Cell Biochem. 51 (1993) 426-435. [46] S. Cecilia, S. Alejandro, M. Felipe, O. Nahuel, M. Guillermo, The role of additional pulses in electropermeabilization protocols, Plos One 9 (2014) e113413. [47] A. Hirsch, Functionalization of single-walled carbon nanotubes. Angew Chem. Int. Ed. Engl. 41 (2002) 1853-1859. [48] Z. Jin, Z. Hongling, Q. Quan, Y. Yanlian, L. Qingwen, L. Zhongfan, G. Xinyong, D. Zuliang, Effect of Chemical Oxidation on the Structure of Single-Walled Carbon Nanotubes, J. Phys. Chem. B 107(2003) 3712-3718 [49] C. S. Kyle, C. N. John, K. Wanda, Model of creation and evolution of stable electropores for DNA delivery, Biophys. J. 86 (2004) 2813–2826. [50] M. E. Jean, P. Thomas, W. Luc, T. Justin, D. David, P. R. Marie, What is (still not) known of the mechanism by which electroporation mediates gene transfer and expression in cells and tissues, Mol. Biotechnol. 41 (2009) 286–295. [51] A. Z. David, W. Joshua, B. M. Henshaw, Y. Fan, Mechanistic analysis of electroporation-induced cellular uptake of macromolecule, Exp. Biol. Med. (Maywood) 233 (2008) 94–105. [52] S. Sandra, R. Paulius, Š. Ingrida, Č. Karolina, Š. Saulius, The dependence of efficiency of transmembrane molecular transfer using electroporation on medium viscosity, J. Gene. Med. 17 (2015) 80–86. [53] T. E. Axel, C. S. Kyle, T. R. Gowrishankar, V. Zlatko, C. W. James, Mechanisms for the intracellular manipulation of organelles by conventional electroporation, Biophys. J. 98 (2010) 2506–2514. [54] P. C. Kevin, W. Farrah, N. Lelia, W. Brody, R. Murray, E. D. Damian, Irreversible electroporation of the pancreas in swine: a pilot study, H. P. B. (Oxford) 12 (2010) 348–351. [55] G. Sersa, T. Jarm, T. Kotnik, A. Coer, M. Podkrajsek, M. Sentjurc, D. Miklavcic, M. Kadivec, S. Kranjc, A. Secerov, M. Cemazar, Vascular disrupting action of electroporation and electrochemotherapy with bleomycin in murine sarcoma, Br. J. Cancer. 98 (2008) 388-398. [56] C. Kanthou, S. Kranjc, G. Sersa, G. Tozer, A. Zupanic, M. Cemazar, The endothelial cytoskeleton as a target of electroporation-based therapies, Mol. Cancer Ther. 5 (2006) 3145-3152. [57] H.J. Scheffer, K. Nielsen, M.C. de Jong, A.A. van Tilborg, J.M. Vieveen, A.R. Bouwman, S. Meijer, C. van Kuijk, P.M. van den Tol, M.R. Meijerink, Irreversible electroporation for nonthermal tumor ablation in the clinical setting: A systematic review of safety and efficacy. J. Vasc. Interv. Radiol. 25 (2014) 997–1011. [58] Z. Liu, C. Davis, W. Cai, L. He, X. Chen, H. Dai, Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. Proc. Natl. Acad. Sci. U. S. A. 105 (2008) 1410-1415. [59] V.E. Kagan, N.V Konduru., W. Feng, B.L. Allen, J. Conroy, Y. Volkov, I.I. Vlasova, N.A. Belikova, N. Yanamala, A. Kapralov, Y.Y. Tyurina, J. Shi, E.R. Kisin, A.R. Murray, J. Franks, D. Stolz, P. Gou, J. Klein-Seetharaman, B. Fadeel, A. Star, A.A. Shvedova, Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation, Nat. Nanotechnol. 5 (2010) 354-359. [60] D. Elgrabli, W. Dachraoui, C. Ménard-Moyon, X.J. Liu, D. S. Bégin, Bégin-Colin, A. Bianco, F. Gazeau, D. Alloyeau, Carbon Nanotube Degradation in Macrophages: Live Nanoscale Monitoring and Understanding of Biological Pathway, ACS Nano. 9 (2015)10113-101124. [61] W.R. Panje, N. Sadeghi, Endoscopic and electroporation therapy of paranasal sinus tumors, Am. J. Rhinol. 14 (2000) 187-191. [62] C. P. Swain, I. Lu, Endoscopic Mucosal Dissection in GI Malignancies. Ann. Gastroenterol. 23 (2010) 172-179. [62] O. Taratula, B. S. Doddapaneni, C. Schumann, X. Li, S. Bracha, M. Milovancev, A. W. G. Alani, O. Taratula, Naphthalocyanine-Based Biodegradable Polymeric Nanoparticles for Image-Guided Combinatorial Phototherapy. Chem. Mater. 27 (2015) 6155−6165. [63] S. Visentin, N.Barbero, S. Musso, V. Mussi, C. Biale, R. Ploeger, G. Viscardi, A Sensitive and Practical Fluorimetric Test for CNT Acidic Site Determination. Chem. Commun. (Camb) 46 (2010) 1443-1445. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3892 | - |
| dc.description.abstract | 本研究將奈米碳管視為奈米電極,分散於細胞外液中,在施予電壓的情況下,透過奈米碳管良好的導電性以及場致發射能力,可於碳管尖端處放大電場效應,降低電穿孔(electroporation)所需之電壓,有效刺激細胞膜改變其通透性 (electro-permeability),令小分子與奈米粒子皆能達到高效能傳輸,大量累積於癌細胞與腫瘤。在細胞實驗中,我們證明了奈米碳管結合低電壓能在細胞膜上產生可恢復性(reversible)之孔洞,克服了傳統電穿孔所需之高電壓對細胞所造成不可恢復性(irreversible)孔洞的導致細胞死亡之障礙,增加細胞存活率並使小分子能有效的傳遞。在動物實驗中,我們給予老鼠尾靜脈注射奈米碳管電極液後,於腫瘤位置進行低電壓刺激,有效的增加了血管的通透性,使奈米粒子從血管穿透到癌細胞組織中,增強高滲透長滯留效應 (enhanced permeability and retention effect)。於癌症治療中,我們分別使用了光熱治療與化療兩種癌症療法,其結果顯示皆能有效的達到癌細胞毒殺以及腫瘤抑制之效果。綜合上述,我們證明此藥物傳輸平台不僅可用於傳統電脈衝化療(electro-chemotherapy),結合奈米碳管的光學性質與熱傳導性,可適用於多樣化的癌症治療中。 | zh_TW |
| dc.description.abstract | Effective delivery of biomolecules or functional nanoparticles into target sites has always been the primary objective for cancer therapy. We demonstrated that by combining single-walled carbon nanotubes (SWNTs) with low-voltage (LV) electrical stimulation, biomolecule delivery can be effectively enhanced through reversible electroporation (EP). Clear pore formation in the cell membrane is observed due to LV (50 V) pulse electrical stimulation amplified by SWNTs. The cell morphology remains intact and high cell viability is retained. This modality of SWNT + LV pulses can effectively transfer both small molecules and macromolecules into cells through reversible EP. This drug delivery system we established could combine with various cancer treatments, such as phototherapy and chemotherapy. The results of animal studies also suggest that treatment with LV pulses alone cannot increase vascular permeability in tumors unless after the injection of SWNTs. The nanoparticles can cross the permeable vasculature, which enhances their accumulation in the tumor tissue. Therefore, in cancer treatment, both SWNT + LV pulse treatment followed by the injection of LIPO-DOX® and SWNT/DOX + LV pulse treatment can increase tumor inhibition and delay tumor growth. This novel treatment modality applied in a human cancer xenograft model can provide a safe and effective therapy using various nanomedicines in cancer treatment. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-13T08:38:07Z (GMT). No. of bitstreams: 1 ntu-105-D98548001-1.pdf: 18307610 bytes, checksum: 5e4ffcad3e7daee37dc8bcbd0bf31b32 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | Contents
中文摘要……………….……………………………………………………………….. I Abstract ………………………………………..………………………….…………... II Contents ..………………………………………………………………………......… IV List of figures ……………………………….…………………………………......…. VI Chapter 1. Introduction……...............……………………………………...………… 1 Chapter 2. Materials and methods……………………………...……………….…… 5 Chapter 3. Results and discussions…..………………...……………………….…… 20 Part I. Enhanced cell electro-permeabilisation combined with phototherapy to kill cancer cells by using single-walled carbon nanotube ………………………….…… 20 3.1.1 Functionalization and characterization of SWNT-PEG/VNc…………………….20 3.1.2 Photodynamic and Photothermal Properties of SWNT-PEG/VNc……………… 22 3.1.3 Enhanced cellular uptake by the combination of LV pulses with SWNT …….... 24 3.1.4 SWNT-PEG/VNc mediated Electro-Phototherapy efficiently kills cancer cells… 25 Part II. Effect of the LV stimulation on Cell Membrane Poration Enhanced by the Single-Walled Carbon Nanotubes………………..…………………………...…….. 28 3.2.1 SWNTs combined with LV pulses induced cell electropermeabilization …..….. 28 3.2.2 Reversibility of cell electropermeabilization ……………………………………. 32 3.2.3. The change of membrane potential in HT-29 cells after EP ……………………. 34 Part III. Combining the Single-Walled Carbon Nanotubes with Low Voltage Electrical Stimulation to Improve Accumulation of Nanomedicines in Tumor for Effective Cancer Therapy. ………………………………………………………...… 38 3.3.1. EPR effect improvement by the increased electrical stimulation through SWNTs…………………….…………………….…………………………………….. 38 3.3.2. In vivo studies of ECT…………………………………………….….…………. 41 Chapter 4. Conclusions………...…………………………………………………….. 46 Reference ………………………………………………………………….………….. 47 Figures …………………………………………………………………………….….. 58 | |
| dc.language.iso | en | |
| dc.subject | 癌症治療 | zh_TW |
| dc.subject | 奈米碳管 | zh_TW |
| dc.subject | 場致發射能力 | zh_TW |
| dc.subject | 電穿孔 | zh_TW |
| dc.subject | 高滲透長滯留效應 | zh_TW |
| dc.subject | single-walled carbon nanotube | en |
| dc.subject | nanomedicine | en |
| dc.subject | tumor | en |
| dc.subject | electroporation | en |
| dc.subject | cancer therapy | en |
| dc.title | 奈米碳管結合低電壓電穿孔之藥物釋放平台於癌症治療應用 | zh_TW |
| dc.title | Combining the Single-Walled Carbon Nanotubes with Low Voltage Electrical Stimulation for Effective Cancer Therapy | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 林峰輝,林文澧,陳文翔,賴秉杉,陳三元 | |
| dc.subject.keyword | 奈米碳管,場致發射能力,電穿孔,高滲透長滯留效應,癌症治療, | zh_TW |
| dc.subject.keyword | cancer therapy,single-walled carbon nanotube,electroporation,tumor,nanomedicine, | en |
| dc.relation.page | 115 | |
| dc.identifier.doi | 10.6342/NTU201600658 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2016-07-15 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf | 17.88 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
