請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38910完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 貝蘇章 | |
| dc.contributor.author | Jun-Horng Chen | en |
| dc.contributor.author | 陳俊宏 | zh_TW |
| dc.date.accessioned | 2021-06-13T16:52:01Z | - |
| dc.date.available | 2007-07-07 | |
| dc.date.copyright | 2005-07-07 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-06-21 | |
| dc.identifier.citation | [1] Ahmet Baştuğ and Bulent Sankur. Improving the payload of watermarking channels via ldpc coding. IEEE Signal Processing Letters, 11(2):90–92, February 2004.
[2] W. R. Bennett. Spectra of quantized signals. The Bell System Technical Journal, 27:446–472, July 1948. [3] Toby Berger. Rate Distortion Theory : a mathematical basis for data compression. Englewood Cliffs, N.J. : Prentice-Hall, 1971. [4] M. U. Celik, G. Sharma, and A. M. Tekalp. Collusion-resilient fingerprinting by random pre-warping. IEEE Signal Processing Letters, 11(10):831–835, October 2004. [5] B. Chen and G. W. Wornell. Quantization index modulation: A class of provably good methods for digital watermarking and information embedding. IEEE Transactions on Information Theory, 47(4):1423–1443, May 2001. [6] Pei-Yin Chen. An index coding algorithm for image vector quantization. IEEE transactions on Systems, Man and Cybernetics– Part B, 34(1):740–746, February 2004. [7] Jung S. Cho, Seung W. Shin, Won H. Lee, Jong W. Kim, and Jong U. Choi. Enhancement of robustness of image watermarks embedding into colored image, based on wt and dct. Proceedings of IEEE International Conference on Information Technology: Coding and Computing, pages 483–488, 2000. [8] Andrzej Cichocki and Shun-Ichi Amari. Adaptive Blind Signal and Image Processing. John Wiley & Sons, 2002. [9] J.H. Conway and N.J.A. Sloane. Sphere packings, lattices, and groups. New York: Springer, 3 edition, 1998. [10] M. H. M. Costa. Writing on dirty paper. IEEE Transactions on Information Theory, IT-29(3):439–441, May 1983. [11] I. J. Cox, M. Miller, and J. Bloom. Digital Watermarking. San Francisco, CA: Morgan Kaufmann, 2001. [12] I. J. Cox, M. L. Miller, and A. L. Mckellips. Watermarking as communications with side information. Proceedings of the IEEE, 87(7):1127–1141, July 1999. [13] Ingemar J. Cox, Joe Kilian, F. Thomson Leighton, and Talal Shamoon. Secure spread spectrum watermarking for multimedia. IEEE Transactions on Image Processing, 6(12):1673–1687, December 1997. [14] Tanmoy Kanti Das and Subhamoy Maitra. Cryptanalysis of correlation-based watermarking schemes using single watermarked copy. IEEE Signal Processing Letters, 11(4):446–449, April 2004. [15] Ray M. Dolby. Apparatus and method for the identification of specially encoded fm stereophonic broadcasts. United States Patent 4,281,217, 1981. [16] Chuhong Fei, Deepa Kundur, and Raymond H. Kwong. Analysis and design of watermarking algorithms for improved resistance to compression. IEEE Transactions on Image Processing, 13(2):126– 144, February 2004. [17] David J. Fleet and David J. Heeger. Embedding invisible information in color images. Proceedings of IEEE International Conference on Image Processing, 1:532–535, 1997. [18] S. I. Gel’fand and M. S. Pinsker. Coding for channel with random parameters. Problems of Control and Information Theory, 9(1):19–31, 1980. [19] Allen Gersho. Asymptotically optimal block quantization. IEEE Transactions on Information Theory, IT-25(4):373–380, July 1979. [20] Allen Gersho and Robert M. Gray. Vector Quantization and Signal Compression. Kluwer Academic Publishers, 1992. [21] Rafael C. Gonzalez and Richard E. Woods. Digital Image Processing. Prentice-Hall, 2 edition, 2002. [22] I. S. Gradshteyn and I. M. Ryzhik. Table of integrals, series, and products. San Diego: Academic Press, 6 edition, 2000. [23] Robert M. Gray. Vector quantzation. IEEE ASSP Magazine, 1(2):4–29, April 1984. [24] Robert M. Gray and Jr. Thomas G. Stockham. Dithered quantizers. IEEE Transactions on Information Theory, 39(3):805–812, May 1983. [25] Frank Hartung and Martin Kutter. Multimedia watermarking techniques. Proceedings of the IEEE, 87(7):1079–1107, July 1999. [26] Chiou Ting Hsu and Ja Ling Wu. Hidden digital watermarks in images. IEEE Transactions on Image Processing, 8(1):58–68, January 1999. [27] H. C. Huang, F. H. Wang, and J. S. Pan. Efficient and robust watermarking algorithm with vector quantisation. Electronics letters, 37(13):826–828, June 2001. [28] R.W.G. Hunt. The Reproduction of Colour. John Wiley & Sons, 6 edition, 2004. [29] Anil K. Jain. Fundamentals of digital image processing. Englewood Cliffs, NJ : Prentice Hall, 1989, 1989. [30] M. Jo and H. D. Kim. A digital image watermarking scheme based on vector quantisation. IEICE Transactions on Information and Systems, E85-D(6):1054–1056, June 2002. [31] W. Jonker and J.-P. Linnartz. Digital rights management in consumer electronics products. IEEE Signal Processing Magazine, 21(2):82–91, March 2004. [32] Shohreh Kasaei, Mohamed Deriche, and Boualem Boashash. A novel fingerprint image compression technique using wavelets packets and pyramid lattice vector quantization. IEEE Transactions on Image Processing, 11(12):1365–1378, December 2002. [33] D. Kundur and K. Karthik. Video fingerprinting and encryption principles for digital rights management. Proceedings of the IEEE, 92(6):918–932, June 2004. [34] C.-C. Jay Kuo, Ton Kalker, and Wensheng Zhou. Digital rights management. IEEE Signal Processing Magazine, 21(2):11–14, March 2004. [35] Edward A. Lee and David G. Messerschmitt. Digital communication. Boston : Kluwer Academic, 2nd edition, 1994. [36] Xiaoqiang Li and Xiangyang Xue. Improved robust watermarking in dct domain for color images. Proceedings of the 18th International Conference on Advanced Information Networking and Applications, 1:53–58, 2004. [37] Y. Linde, A. Buzo, and R. Gray. An algorithm for vector quantizer design. IEEE Transactions on Communications, COM-28(1):84–95, January 1980. [38] Huajian Liu, Xiangwei Kong, Xiangdong Kong, and Yu Liu. Content based color image adaptive watermarking scheme. IEEE International Symposium on Circuits and Systems, 2:41–44, 2001. [39] Z. M. Lu and S. H. Sun. Digital image watermarking technique based on vector quantisation. Electronics letters, 36(4):303–305, February 2000. [40] Benoit Macq, Jana Dittmann, and Edward J. Delp. Benchmarking of image watermarking algorithms for digital rights management. Proceedings of the IEEE, 92(6):971–984, June 2004. [41] Henrique S. Malvar and Dinei A. F. Florêncio. Improved spread spectrum: A new modulation technique for robust watermarking. IEEE Transactions on Signal Processing, 51(4):898–905, April 2003. [42] Aleksandra Mojsilović and Emina Soljanin. Color quantization and processing by fibonacci lattices. IEEE Transactions on Image Processing, 10(11):1712–1725, November 2001. [43] T. Moriya, Y. Takashima, T. Nakamura, and N. Iwakami. Digital watermarking schemes based on vector quantization. In IEEE Workshop on Speech Coding for Telecommunications Proceeding, pages 95–96, 1997. [44] N. Nikolaidis and I. Pitas. Robust image watermarking in the spatial domain. Signal Processing, 66(6):385–403, May 1998. [45] M. T. Orchard and C. A. Bouman. Color quantization of images. IEEE Transactions on Signal Processing, 39(12):2677–2690, December 1991. [46] J.-S. Pan, Y.-C. Hsin, H.-C. Huang, and K.-C. Huang. Robust image watermarking based on multiple description vector quantisation. Electronics Letters, 40(22):1409–1410, October 2004. [47] S.-C. Pei and J.-H. Chen. A robust blind image watermarking scheme based on vector quantization. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, E87-A(4):912–919, April 2004. [48] F. A. P. Petitcolas, R. J. Anderson, and M. G. Kuhn. Information hiding -a survey. Proceedings of the IEEE, 87(7):1062–1078, July 1999. [49] R. L. Pickholtz, D. L. Schilling, and L. B. Milstein. Theory of spread-spectrum communications–a tutorial. IEEE Transactions on Communications, 30(5):855–884, May 1982. [50] William K. Pratt. Digital Image Processing. John Wiley & Sons, 3 edition, 2001. [51] F. Rothen and A.-J. Koch. Phyllotaxis or the properties of spiral lattices. Journal de Physique, 50:933–657, March 1989. [52] K. Su, D. Kundur, and D. Hatzinakos. Spatially localized image-dependent watermarking for statistical invisibility and collusion resistance. IEEE Transactions on Multimedia, 7(1):52–66, February 2005. [53] Mitchell D. Swanson, Mei Kobayashi, and Ahmed H. Tewfik. Multimedia data-embedding and watermarking technologies. Proceedings of the IEEE, 86:1064–1087, June 1998. [54] U. Uludag, S. Pankanti, S. Prabhakar, and A. K. Jain. Biometric cryptosystems: issues and challenges. Proceedings of the IEEE, 92(6):948–960, June 2004. [55] G. Wu and E.-H. Yang. Joint watermarking and compression using scalar quantization for maximizing robustness in the presence of additive gaussian attacks. IEEE Transactions on Signal Processing, 53(2):834–844, February 2005. [56] M. Wu, W. Trappe, Z. J. Wang, and K. J. R. Liu. Collusion-resistant fingerprinting for multimedia. IEEE Signal Processing Magazine, 21(2):15–27, March 2004. [57] Min Wu. Joint security and robustness enhancement for quantization based data embedding. IEEE Transactions on Circuits and Systems for Video Technology, 13:831–841, August 2003. [58] Min Wu and Bede Liu. Multimedia Data Hiding. Springer-Verlag, 2003. [59] L. Xie and G. R. Arce. A class of authentication digital watermarks for secure multimedia communication. IEEE Transactions on Image Processing, 10(11):1754–1764, November 2001. [60] Y. Yamada, S. Tazaki, and R. M. Gray. Asymptotic performance of block quantizers with difference distortion measures. IEEE Transactions on Information Theory, IT-26(1):6–14, January 1980. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38910 | - |
| dc.description.abstract | 網路與高容量儲存設備使得數位資訊內容(如:音樂、影像與視訊…等)的交換與傳播更加便利,但卻也讓著作權的保障面臨嚴厲的挑戰,進而影響創作的發展與進步。另外,由於軟體科技日新月異,幾可亂真的竄改使得判別數位資訊內容的真偽更為不易。浮水印(Watermarking)技術被廣泛地討論與研究,即是寄望該技術的成熟,能為上述種種挑戰提供解決之道,並為數位權利的管理(Digital Rights Management)提供堅實的基礎。
本論文首先探討數位影像浮水印技術的基本架構及其各組成要件的功能。在評估浮水印技術時,透明度(Transparency)代表浮水印資訊的嵌入對視覺品質的影響程度;強健性(Robustness)是指所嵌入的資訊抵抗惡意攻擊或各種信號處理的能力;容量(Capacity)則為載送數位浮水印資訊量的能力。以上評量參數在不同的浮水印應用時,有不同程度的要求。本研究列舉各種浮水印應用,並對各項參數的要求提出建議。 早期對數位浮水印技術的探討,常將欲嵌入的資訊視為數位通訊系統的傳送訊息。此訊息在到達接收端前,會經歷原始影像的干擾與傳輸通道的攻擊。常被提及的展頻浮水印(Spread Spectrum Watermarking)技術在最初被提出時,即以此觀點進行分析與討論。然而,此觀點忽視了原始影像在傳送端為己知的事實,若能在嵌入數位浮水印時參考原始影像,來自原始影像的干擾應能因而減少。以量化為基礎的浮水印技術(Quantization-Based Watermarking)即以此概念來設計。此技術之特點為在接收端毋需原始影像即可萃取所嵌入的浮水印資訊(Blind Detection),該技術可以量化索引值調變(Quantization Index Modulation, QIM)之方法為代表。本論文除了分析與討論以純量量化(Scalar Quantization)為基礎的數位影像浮水印外,並討論與比較各種改善機制。實驗結果顯示,各種改善機制雖有相當的效果,但應用的場合均有所限制。本研究因而提出非中心量化(Non-Centric Quantization)的方法,以此法嵌入浮水印的效能表現,在大部份的應用場合中均優於傳統的量化浮水印技術。 本論文亦討論以向量量化(Vector Quantization, VQ)為基礎的數位浮水印技術。向量量化技術以其簡單的解碼器(Decoder)見長,若在編碼時將浮水印資訊納入考量,則可同時達成浮水印與壓縮的功能(Joint Watermarking and Compression, JWC)。論文中採用二元樹分割法(Binary Tree Splitting Method)產生向量量化中所需的碼簿(Code Book),因而在編碼的同時即可嵌入浮水印。實驗結果顯示此方法在各方面的效能均優於其他以向量量化為基礎的浮水印技術。而其簡單快速的運算量,更大幅提昇了可應用性。 現今的影像浮水印技術,大部份都針對灰階的原始影像處理。提及彩色影像者,亦建議以灰階影像的浮水印技術個別地應用於彩色影像中的三通道(Tri-Channel)信號或其所屬的灰階信號。此概念忽略了三通道信號彼此的關聯性。本研究發現,將浮水印資訊嵌入各通道後的效能表現,將會因其遭遇攻擊的種類不同而有所差異,使用者將因此無法決定應將浮水印嵌入至哪一通道。費伯納契晶格(Fibonacci Lattice)曾被提出應用於色彩量化(Color Quantization)的研究。除了其優異的視覺效果外,解碼端只需利用少量參數,即可簡單地產生與編碼端相同的調色盤(Color Palette)。本論文提出費伯納契晶格索引值調變(Fibonacci Lattice Index Modulation, FLIM)的方法。以此法將具有驗證功能的易碎(Fragile)浮水印嵌入到原始影像的彩色信號成分,將有相當優異的透明度表現。若再配合QIM技術,把具有保護所有權功能的強健(Robustness)浮水印嵌入到原始彩色影像的灰階信號成分,將可使數位影像同時載有二種不同功能的浮水印資訊。本研究實驗結果顯示:易碎浮水印的嵌入並無損於強健浮水印的效能。此一混合浮水印技術,將大幅提高浮水印技術的可應用性。 | zh_TW |
| dc.description.abstract | The computer networks and mass storage devices make the exchange and spread of digital multimedia content more easy than before, yet challenge the copyright protection and obstruct the development of creative work. In addition, many fantastic software can tamper the digital content imperceptibly, and thus raise the difficulty of authentication. Consequently, watermarking techniques are extensively discussed with the aim to address these issues and provide the DRM (Digital Rights Management) with a firm basis.
This dissertation presents a preliminary discussion of watermarking systems. Each part of a generic watermarking scheme is discussed essentially. In the invisible watermarking systems, three important properties: transparency, robustness, and capacity, are typically evaluated to criticize the performance of a watermarking system. However, these properties are demanded different extents depending on what applications the watermarking systems are applied. Many researches regarded the watermark as the message to be sent over a digital communications system, and the transmitting will inevitably sustain the interference from the host signal and the superimposed noise from attacks. However, this viewpoint ignores the fact that the host signal is known to the watermark embedder. The quantization-based watermarking has the inherent advantage that the host signal is taken into account for rejecting the interference from it, where the QIM (Quantization Index Modulation) is the representative approach. This study analyzes and compares a variety of improving skills for quantization-based watermarking. The experimental results have shown that those improving skills more or less accomplished their expectation in some restricted scenarios, but not for all the cases. In this dissertation, the non-centric quantization is proposed to improve the robustness of quantization-based watermarking. The simulation results have demonstrated that the proposed scheme outperforms the convectional quantization-based watermarking for most of the applicable cases. This study also presents the watermarking schemes based on vector quantization (VQ), which inherently have the feature of joint watermarking and compression (JWC). A modified binary tree splitting method (BTSM) is proposed to generate the codebook for VQ, and the watermark message is thus embedded by the replacement of the representative index when the host vector is encoded. The performance superiority over other watermarking schemes based on VQ is presented. Notably, the lightness of computation cost of the proposed scheme enhances its applicability. Most of the watermarking approaches are proposed for the host images in gray-level. As for the color host images, the most intuitive approach is directly applied the methods designed for gray-level images to the tri-channel signals of the host images. This study evaluates the performances of the watermark messages embedded into different channels of the color host image. The experimental results have shown that the answer to 'which channel of the color host image is suitable for embedding watermark message?' is indecisive, yet should be answered according to the attack to which the watermarked images will resist. The color quantization based on the Fibonacci lattice has been proven to be competitive to other approaches for its good visual quality and the simplicity of color palette generation at decoder end. A novel image watermarking approach, Fibonacci Lattice Index Modulation (FLIM), is specifically proposed for the color image watermarking in this study. FLIM unobtrusively embeds a fragile watermark into the chromatic component for the purpose of authentication. With another robust watermark embedded into the luminance component by the QIM approach, the hybrid watermarking system embeds two watermark messages with different purposes concurrently, and can thus be applied to a variety of scenarios. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T16:52:01Z (GMT). No. of bitstreams: 1 ntu-94-D85523019-1.pdf: 29525837 bytes, checksum: 4f81a7952c57719e5d3d410480b2094d (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | 1 Introduction 13
1.1 Introduction to Watermarking Systems . . . . . . . . . 13 1.2 Transparency, Robustness, and Capacity . . . . . . . . 20 1.3 Applications of the Watermarking Systems . . . . . . . 23 1.3.1 Proof of Ownership . . . . . . . . . . . . . . . . 23 1.3.2 Transaction Tracking . . . . . . . . . . . . . . . 24 1.3.3 Control of Copy . . . . . . . . . . . . . . . . . . 25 1.3.4 Annotation . . . . . . . . . . . . . . . . . . . . 27 1.3.5 Authentication . . . . . . . . . . . . . . . . . . 28 1.3.6 Digital Rights Management (DRM) . . . . . . . 29 1.4 Summary of this Chapter . . . . . . . . . . . . . . . . . 30 1.5 Dissertation Summary . . . . . . . . . . . . . . . . . . 33 2 Watermarking Based on Scalar Quantization 35 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 35 2.2 Spread Transform Dither Modulation (STDM) . . . . . 37 2.2.1 Distortion-Compensated QIM . . . . . . . . . . 45 2.2.2 Comparison with Low-Bit(s) Modulation (LBM) 47 2.2.3 Spread Transform Versus Repetition Coding . . 49 2.3 Principal Direction Dither Modulation (PDDM) . . . . 51 2.4 Robustness Improvement by Look-Up Table (LUT) Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 2.5 Comparison with Spread Spectrum Watermarking . . . 58 2.6 Robustness Improvement by Non-Centric Quantization 65 2.6.1 Informed Determination of the Quantized Values 65 2.6.2 Simulation Results for the Gaussian Distributed Host Signal . . . . . . . . . . . . . . . . . . . . 73 2.6.3 Simulation Results of Embedding Bi-Level Watermark into Gray-Level Image . . . . . . . . . 74 2.7 Summary of this Chapter . . . . . . . . . . . . . . . . . 83 3 Watermarking Based on Vector Quantization 85 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 87 3.2 Distortion Measurements of Vector Quantization . . . . 90 3.3 Codebook Generation by Binary Tree Splitting of Clusters 92 3.3.1 Binary Tree Splitting Method, BTSM . . . . . . 92 3.3.2 Computation Costs of LBG and BTSM . . . . . 95 3.4 Watermark Embedding and Extracting . . . . . . . . . 98 3.4.1 Embedding . . . . . . . . . . . . . . . . . . . . 98 3.4.2 Extracting . . . . . . . . . . . . . . . . . . . . . 99 3.4.3 Codebook Size N and Vector Dimensions p . . . 100 3.5 Simulation Results . . . . . . . . . . . . . . . . . . . . 102 3.5.1 Performance Evaluation of Proposed Scheme . . 102 3.5.2 Comparison with Jo's Scheme . . . . . . . . . . 107 3.6 Summary of this Chapter . . . . . . . . . . . . . . . . . 109 4 Color Image Watermarking 111 4.1 Peculiarity to Color Image Watermarking . . . . . . . . 111 4.1.1 Previous Works on Color Image Watermarking . 111 4.1.2 Embedding Watermark Message into Different Channels of Color Host Images . . . . . . . . . 112 4.2 Fibonacci Lattices . . . . . . . . . . . . . . . . . . . . 118 4.3 Color Image Watermarking by Fibonacci Lattice Index Modulation (FLIM) . . . . . . . . . . . . . . . . . . . . 122 4.3.1 Construct the Fibonacci Lattice . . . . . . . . . 122 4.3.2 Fibonacci Lattice Index Modulation (FLIM) . . 126 4.4 Summary of this Chapter . . . . . . . . . . . . . . . . . 129 5 Conclusions and Future Works 131 | |
| dc.language.iso | en | |
| dc.subject | 量化 | zh_TW |
| dc.subject | 數位影像浮水印 | zh_TW |
| dc.subject | 向量量化 | zh_TW |
| dc.subject | 費伯納契晶格 | zh_TW |
| dc.subject | 強健性 | zh_TW |
| dc.subject | Fibonacci Lattice | en |
| dc.subject | Digital Image Watermarking | en |
| dc.subject | Vector Quantization | en |
| dc.subject | Quantization | en |
| dc.subject | Robustness | en |
| dc.title | 以量化為基礎之數位影像浮水印 | zh_TW |
| dc.title | Quantization-Based Digital Image Watermarking | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 鄭伯順,吳家麟,鍾國亮,黃文良,徐忠枝,曾建誠 | |
| dc.subject.keyword | 數位影像浮水印,量化,向量量化,費伯納契晶格,強健性, | zh_TW |
| dc.subject.keyword | Digital Image Watermarking,Quantization,Vector Quantization,Fibonacci Lattice,Robustness, | en |
| dc.relation.page | 142 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-06-22 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 28.83 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
