Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38881
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳信希
dc.contributor.authorTung-Ho Wuen
dc.contributor.author吳東和zh_TW
dc.date.accessioned2021-06-13T16:50:32Z-
dc.date.available2005-07-04
dc.date.copyright2005-07-04
dc.date.issued2005
dc.date.submitted2005-06-23
dc.identifier.citation[1]Bethard, S., Yu, H., Thornton, A., Hatzivassiloglou, V. and Jurafsky, D. “Automatic Extraction of Opinion Propositions and their Holders.” Proceedings of AAAI 2004 Spring Symposium on Exploring Attitude and Affect in Text: Theories and Applications, 2004.
[2]Cardie, C., Wiebe, J., Wilson, T. and Litman, D. “Combining Low-level and Summary Representations of Opinions for Multi-perspective Question Answering.” Proceedings of AAAI Spring Symposium Workshop, pp. 20-27, 2004.
[3]Chang, R.-Y. and Huang, C.-R. “Sinica BOW.” Proceedings of ROCLING XVI: Conference on Computational Linguistics and Speech Processing, pp. 285-294, 2-3 September, 2004.
[4]Chen, K.-H. and Chen, H.-H. “The Chinese Text Retrieval Tasks of NTCIR II Workshop.” Proceedings of 2nd NTCIR Workshop, pp. 51-72, 2001.
[5]Dave, K., Lawrence, S. and Pennock, D.M. “Mining the Peanut Gallery: Opinion Extraction and Semantic Classification of Product Reviews.” Proceedings of 12th International Conference on World Wide Web, pp. 519-528, 2003.
[6]Kim, S.-M. and Eduard, H. “Determining the Sentiment of Opinions.” Proceedings of Coling 2004, pp. 1367-1373, 2004.
[7]Liu, H., Lieberman, H. and Selker, T. “A Model of Textual Affect Sensing Using Real-world Knowledge.” Proceedings of the 8th International Conference on Intelligent User Interfaces, 2003.
[8]Mei, J., Zhu, Y., Gao, Y. And Yin, H. “ tong2yi4ci2ci2lin2. ” Shanghai Dictionary Press. 1982.
[9]Morinaga, S., Yamanishi, K., Tateishi, K. and Fukushima, T. “Mining Product Reputations on the Web.” Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discover and Data Mining, 2002.
[10]Pang, B., Lee, L. and Vaithyanathan, S. “Thumbs Up? Sentiment Classification Using Machine Learning Techniques.” Proceedings of the 2002 Conference on EMNLP, pp. 79-86, 2002.
[11]Pang, B. and Lee, L. “A Sentimental Educations: Sentiment Analysis Using Subjectivity Summarization based on Minimum Cuts.” Proceedings of ACL, 2004.
[12]Riloff, E., Wiebe, J. and Wilson, T. “Learning Subjective Nouns Using Extraction Pattern Bootstrapping.” Proceedings of Seventh Conference on Natural Language Learning, pp. 25-32, 2003.
[13]Riloff, E. and Wiebe, J.. “Learning Extraction Patterns for Subjective Expressions.” Proceedings of the 2003 Conference on EMNLP, pp. 105-112, 2003.

[14]Stoyanov, V., Cardie, C., Litman, D. and Wiebe, J. “Evaluating an Opinion Annotation Scheme Using a New Multi-Perspective Question and Answer Corpus.” Proceedings of AAAI 2004 Spring Symposium on Exploring Attitude and Affect in Text: Theories and Applications, 2004.
[15]Wiebe, J. “Learning Subjective Adjectives from Corpora.” Proceeding of 17th National Conference on Artificial Intelligence, pp. 735-740, 2000.
[16]Wiebe, J. and Wilson, T. “Learning to Disambiguate Potentially Subjective Expressions.” Proceedings of Sixth Conference on Natural Language Learning, pp. 112-118, Taipei, Taiwan, August, 2002.
[17]Wiebe, J., Wilson, T. and Bell, M. “Identify Collocations for Recognizing Opinions.” Proceedings of ACL/EACL2001 Workshop on Collocation, 2001.
[18]Wiebe, J. and Riloff, E. “Creating Subjective and Objective Sentence Classifiers from Unannotated Texts.” Proceedings of Sixth International conference on Intelligent Text Processing and Computational Linguistics, pp. 486-497, Mexico City, 2005.
[19]Wilson, T. and Wiebe, J. “Annotating Opinions in the World Press.” Proceedings of 4th SIGdial Workshop on Discourse and Dialogue, 2003.
[20]Yi, J., Nasukawa, T., Bunescu, R. and Niblack, W. “Sentiment Analyzer: Extracting Sentiments about a Given Topic using Natural Language Processing Techniques.” Proceedings of ICDM 2003, pp.427-434, 2003.
[21]Yu, H. and Hatzivassiloglou, V. “Towards Answering Opinion Questions: Separating Facts from Opinions and Identifying the Polarity of Opinion Sentences.” Proceedings of EMNLP 2003, pp. 129-136, 2003.
[22]高台茜,倪珮晶.華語文網路言論負向情緒用詞檢核軟體研發.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38881-
dc.description.abstract文章中的意見可能以明顯或隱含的方式表達出來。針對行政機關的效率提升及公司產品的改進等來說,意見提供了寶貴的資訊及不同人所表達的觀點。在這篇論文中,我們認為意見句就是句子的持有者或作者對某特定主題所發表的一段陳述性句子,同時在這句子中含有情緒成分。在此,我們將含有情緒的詞彙當成情緒詞。在意見句中,句子中的情緒詞會決定此意見句的意見傾向;在一篇文章中,文章裡的情緒詞會決定整篇文章的意見傾向。因此,對意見擷取來說,情緒詞是很關鍵的特徵。
在建立完初步的情緒字典後,我們提出了三個方法來判別一個未知詞是正面情緒詞、負面情緒詞或非情緒詞,分別是Thesaurus-Based Approach, Character-Based Approach及Combined Approach。在這三個方法中,Combined Approach是最好的方法,它利用同義詞資訊及情緒分數來判別一個未知詞,而情緒分數的計算方式是根據一個詞的中文字組成方式來計算。在實驗中,對動詞類詞彙其 F-measure 是 73.18%,對名詞類詞彙是 63.75% ,平均來看其F-measure 是 70.40%。然後,我們根據Combined Approach提出Sentiment Miner來學習新的正負面情緒詞。
在意見擷取層面,我們提出Passage Level Algorithm來偵測含在文章當中的意見句,而這演算法利用到情緒詞及句子中的內文資訊。在句子層次,最好的實驗結果其 F-measure 是62.16% 。我們也提出Document Level Algorithm來偵測整篇文章的情緒傾向。在文件層次,最好的實驗結果其 F-measure 是76.56% 。
zh_TW
dc.description.abstractOpinions may be explicitly or implicitly embedded in documents. They are useful information and viewpoints to improve services of government or products of companies. We consider that an opinion is a statement expressed towards a topic and contains sentiments. Sentiment words determine the opinion type of an opinion passage and the overall opinion tendency of a document. Sentiment words are the key features in opinion extraction.
We propose three approaches, including the Thesaurus-Based Approach, the Character-Based Approach and the Combined Approach, to determine whether an unknown word is positive, negative or non-sentiment. The Thesaurus-Based Approach utilizes the synonym information to classify an unknown word. The Character-Based Approach computes the sentiment score of a Chinese word based on its composite characters and classifies a word by its sentiment score information. The Combined Approach utilizes the synonym information and sentiment scores to classify an unknown word. This approach is the best among these approaches. The F-measure is 73.18% and 63.75% for verbs and nouns, respectively under strict assessment by human. The average F-measure is 70.40%. Finally, we propose the Sentiment Miner based on the Combined Approach to acquire new positive and negative sentiment words from documents.
For opinion extraction, we propose the Passage Level Algorithm to detect the opinion passages inside a document. This algorithm utilizes sentiment words and context information. We also propose the Document Level Algorithm to determine the overall opinion tendency of a document based on the opinion passages inside the document. In experiments, the best F-measure is 62.16% at the passage level and 76.56% at the document level.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T16:50:32Z (GMT). No. of bitstreams: 1
ntu-94-R92922093-1.pdf: 196776 bytes, checksum: 9764e6adc3ad529580c09101a6fc4b99 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontentsTable of Contents
Chapter 1 Introduction 1
1.1. Motivation 1
1.2. The Relationship between Sentiment Words and Opinions 1
1.2.1. Sentiment Words 2
1.2.2. Opinion 3
1.3. Related Works 4
1.4. Main Issues 5
1.5. The Organization of This Thesis 6
Chapter 2 Chinese Sentiment Dictionary and Experimental Corpus 7
2.1. Chinese Sentiment Dictionary 7
2.1.1. General Inquirer (GI) 7
2.1.2. Chinese Network Sentiment Dictionary (CNSD) 8
2.1.3. Chinese Sentiment Dictionary (CSD) 8
2.2. Corpus Description 9
2.2.1. The Introduction of NTCIR 9
2.2.2. Experimental Corpus 9
2.2.3. Corpus Annotation 10
2.3. Test Bed 13
2.3.1. Test Bed for Sentiment Word Classification 13
2.3.1.1. Annotator Agreement 13
2.3.1.2. Majority Answer 14
2.3.2. Test Bed for Opinion Extraction 14
Chapter 3 Chinese Sentiment Word Acquisition 15
3.1. Thesaurus-Based Approach 15
3.1.1. Thesaurus – Cilin and BOW 16
3.1.2. Algorithm 16
3.2. Character-Based Approach 16
3.2.1. Assumption 17
3.2.2. Formula 17
3.2.2.1. Train Sentiment Scores of Chinese Characters 17
3.2.2.2. Compute Sentiment Scores of Chinese Words 19
3.2.2.3. Chinese Words with the Negation Characters “不” 20
3.2.3. Algorithm 20
3.3. Combined Approach 21
3.3.1. Scheme to Combine 21
3.3.2. Algorithm 22
3.4. Sentiment Miner 23
Chapter 4 Experiment and Discussion 25
4.1. Experiments on Thesaurus-Based Approach 25
4.1.1. Experiment Setup 25
4.1.2. Experiment Result and Analysis 26
4.2. Experiments on Character-Based Approach 28
4.2.1. Experiment Setup 28
4.2.2. Experiment Results and Discussions 29
4.3. Experiments on Combined Approach 30
4.3.1. Experiment Setup 30
4.3.2. Experiment Result and Analysis 31
4.3.3. Another Evaluation for Combined Approach 32
4.3.3.1. Experiment Setup 32
4.3.3.2. Experiment Result 33
4.4. The Effect of the size of the Chinese Sentiment Dictionary 34
4.4.1. Experiment Setup 34
4.4.2. Experiment Result and Analysis 35
4.5. Summary 36
CHAPTER 5 Opinion Extraction 37
5.1. Opinion Extraction at the passage Level 37
5.1.1. Passage Level Algorithm 37
5.1.3. Experiments at the Passage Level 38
5.1.3.1. Experiment Setup 38
5.1.3.2. Experiment Result 39
5.1.3.3. Discussion 40
5.2. Opinion Extraction at the Document Level 40
5.2.1. Document Level Algorithm 41
5.2.3. Experiments at the Document Level 41
5.2.3.1. Experiment Setup 41
5.2.3.2. Experiment Results 42
CHAPTER 6 Conclusion and Future Works 43
6.1. Conclusion 43
6.2. Future Works 43
dc.language.isoen
dc.title中文情緒詞彙自動學習及在意見擷取之應用zh_TW
dc.titleChinese Sentiment Word Acquisition and Its Applications to Opinion Extractionen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李御璽,曾元顯,簡立峰
dc.subject.keyword情緒詞,意見擷取,zh_TW
dc.subject.keywordSentiment Word,Opinion Extraction,en
dc.relation.page48
dc.rights.note有償授權
dc.date.accepted2005-06-23
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  目前未授權公開取用
192.16 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved