請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38839完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳達仁(Dar-Zen Chen) | |
| dc.contributor.author | Po-Yu Chuang | en |
| dc.contributor.author | 莊博宇 | zh_TW |
| dc.date.accessioned | 2021-06-13T16:48:35Z | - |
| dc.date.available | 2016-07-26 | |
| dc.date.copyright | 2011-07-26 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-07-15 | |
| dc.identifier.citation | [1] Freudenstein, F., 1971, “An Application of Boolean Algebra to the Motion of Epicyclic Drives,” ASME Journal of Engineering for Industry, Vol. 93, pp. 176-182.
[2] Tsai, L. W., 1987, “An Application of the Linkage Characteristic Polynomial to the Topological Synthesis of Epicyclic Gear Trains,’’ ASME Journal of Mechanisms, Transmissions, and Automation in Design, Vol. 109, pp. 329–336. [3] Tsai, L. W. and Lin, C. C., 1989, “The Creation of Non-fractionated Two-Degree-of-Freedom Epicyclic Gear Trains,” ASME Journal of Mechanisms, Transmissions, and Automation in Design, Vol. 111, pp. 524-529. [4] Olson, D. G., Erdman, A. G. and Riley, D. R., 1991, “Topological Analysis of Single-Degree-of-Freedom Planetary Gear Trains,” ASME Journal of Mechanical Design, Vol. 113, pp. 10- 16. [5] Rao, A. C., 2003, “A Genetic Algorithm for Epicyclic Gear Trains,” Mechanism and Machine Theory, Vol. 38, pp. 135-147. [6] Jose M. del Castillo, 2002, “The analytical expression of the efficiency of planetary gear trains” Mechanism and Machine Theory, Vol 37, Issue 2,Pages 197-214 [7] Ilie Talpasanu, T. C. , and P. A. Simionescu, 2006, “Application of Matroid Method in Kinematic Analysis of Parallel Axes Epicyclic Gear Trains,” ASME Journal of Mechanical Design, Vol. 128, Issue 6, 1307 [8] A. Kahraman, H. Ligata, K. Kienzle, D. M. Zini, 2004 “A Kinematics and Power Flow Analysis Methodology for Automatic Transmission Planetary Gear Trains”, Volume 126, Issue 6, 1071 [9] F. Buchsbaum, and F. Freudenstein, 1970, “Synthesis of Kinematic Structure of Geared Kinematic Chain and other Mechanisms”, Journal of Mechanisms, Volume 5, Issue 3, Autumn 1970, Pages 357-392. [10] Tsai, L. W., 2001, Mechanism Design: Enumeration of Kinematic structures According to Function, Boca Raton London, New York Washington, D.C. [11] Erdman, A. G., 1993, Modern Kinematics: Developments in the Last Forty Years, John Wiley & Sons, Inc. New York, NY. [12] Liu, C. P. and Chen, D. Z., 2000, “On the Embedded Kinematic Fractionation of Epicyclic Gear Trains,” ASME Journal of Mechanical Design, Vol. 122, pp. 479-483. [13] Liu, C. P. and Chen, D. Z., 2001, “On the Application of Kinematic Units to the Topological Analysis of Geared Mechanism,” ASME Journal of Mechanical Design, Vol. 123, pp. 240-246. [14] Liu, C. P., Chen, D. Z. and Chang, Y. T., 2004, “Kinematic Analysis of Geared Mechanisms Using the Concept of Kinematic Units,” Mechanism and Machine Theory, Vol. 39, pp. 1207-1221. [15] Lung-Wen Tsai, Chen-Chou Lin, 1989, “The Creation of Nonfractionated, Two-Degree-of-Freedom Epicyclic Gear Trains”, ASME J. Mech. Trans. Autom. Des. Vol. 111 (1989), pp. 524–529 [16] Chen, D. Z., Shieh, W. B. and Yeh, Y. C., 2008, “Kinematic Characteristics and Classification of Geared Mechanisms Using the Concept of Kinematic Fractionation.” ASME Journal of Mechanical Design, Vol. 130, 082602. [17] Shieh, W. B., Chen, D. Z. and Chen, Y. C., 2008, “Kinematic Synthesis of One-DOF Geared Mechanisms According to Specified Gain Types.” Proceedings of the ASME 2008 IDETC, Paper No. DETC2008-49510. [18] Thomas R. Kane, 1977, “Constant Speed Ratio Coupling for Shaft with Time-Varying Orientation ” , United State Patent, Patent No.4006607 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38839 | - |
| dc.description.abstract | 摘要:
本研究就主要目的為合成一具有特定增益型態之齒輪機構。利用運動分解的概念,一齒輪運動鏈可被分解成數個單自由度的運動單元;藉由分析桿件間相對角速度的比值,可得到運動單元的運動增益。每個運動單元之間都可由共同桿件相互連結,並使得運動單元間的運動傳輸形成一運動傳輸路徑:決定齒輪機構的輸入與輸出可決定運動傳輸路徑的流向,加上運動單元的運動增益,整個齒輪運動鏈的運動增益即可得到。但是,當一齒輪機構之輸入輸出與其他桿件有同軸關係的時候,其輸入與輸出可藉由同軸重置而改變;如此一來,輸入與輸出桿件的改變會造成整個運動鏈運動增益的改變,因此運動增益經由同軸重置改變的情形必須加以研究與分類,使得在運動分析上能動掌握所有的運動增益變化,並且將這種運動增益變化的情形整理成一系列的規則。 由於當運動增益具有相同數學形式的時候,齒輪運動鏈可以經由指定特定齒輪比達到相同運動,因此運動增益可以進一步的根據不同的數學形式分類,讓齒輪運動鏈的運動特性可以被更快速且直接的得到。根據特定齒輪運動型態,我們將一個自由度六桿,與兩個自由七桿以下,並且末端點與地桿相鄰之齒輪運動鏈加以分類。 最後,利用分析齒輪運動增益型態的方式,針對一等速比聯軸器做運動型態分析,並且找出與他擁有相同運動特性,但是具有較少桿件數的齒輪機構;藉由分析齒輪運動增益的方式合成等速比聯軸器,能夠快速找出圖集中具有相同運動特性的齒輪運動鏈,使得齒輪機構的合成能夠更快速且有效率。 | zh_TW |
| dc.description.abstract | In this paper, the kinematic behavior of a GKC can be predicted by the relative angular displacement of turning pairs, and motion flow can be illustrated as propagation path. The coaxial thin edge in a GKC can be coaxial rearrangement, and the global gain might be changed. Therefore, the variation of global gain through coaxial rearrangement has to be investigated, and clarified. Furthermore, the global gain with same mathematic form can be derived same kinematic behavior through assigning specific gear ratio, so the global gain are further classified according to the mathematic form. Hereafter, we established the rule for determining global gain type from the construction of GKCs.
The CSRSC is a gear mechanism which has two shafts with constant speed ratio even the angle between two shafts is changed. Based on the rules for determining gain type, the new designs of CSRSC are synthesized through a systematically process. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T16:48:35Z (GMT). No. of bitstreams: 1 ntu-100-R98522640-1.pdf: 1318954 bytes, checksum: c2fd589bcbc7af29632978d58a626da0 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 摘要: 3
Abstract 4 1.Introduction 8 2.The global gain of canonical form GKC 14 2.1. Canonical form of GKC 14 2.2. Assignment of input, output pairs, and ground link 15 2.3. Interface condition between KUs 20 2.4. Constructing propagation path, and global gain 21 2.5. Classification of global gain type 24 2.6. Determining global gain type of canonical form through the construction of propagation path 25 3.The end vertex coaxial condition 28 3.1. The coaxial-featured graph 28 3.2. Variation of global gain type through intra-coaxial rearrangement 30 3.3. Variation of global gain type through inter-coaxial rearrangement 31 4.An example 35 4.1. One-DOF geared mechanisms with [Subtractive] gain type 35 4.2. Two-DOF geared mechanisms with [S,S] gain type 36 5.Conceptual Synthesis of Constant Speed Ratio Shaft Coupling (CSRSC) 37 5.1. Fundamental Characteristics of CSRSC 37 5.2 Topological requirement of CSRSC 39 5.3. Kinematic analysis of admissible GKCs 42 6.Conclusion 46 Reference 48 | |
| dc.language.iso | en | |
| dc.subject | 運動合成 | zh_TW |
| dc.subject | 齒輪 | zh_TW |
| dc.subject | 增益 | zh_TW |
| dc.subject | 運動分析 | zh_TW |
| dc.subject | 聯軸器 | zh_TW |
| dc.subject | gear | en |
| dc.subject | topological synthesis | en |
| dc.subject | shaft coupling | en |
| dc.subject | kinematic synthesis | en |
| dc.subject | gain | en |
| dc.title | 根據特定齒輪增益型態合成末端點與地桿相鄰之齒輪機構:合成一等速比聯軸器為例 | zh_TW |
| dc.title | Synthesis of Geared Mechanisms with Ground -Adjacent End Vertices According to Specified Gain Type:
An Example of the Synthesis of Constant Speed Ratio Shaft Coupling Mechanism | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 謝文賓(Win-Bin Shieh),林正平(Chang-Pin Lin) | |
| dc.subject.keyword | 齒輪,增益,運動分析,聯軸器,運動合成, | zh_TW |
| dc.subject.keyword | gear,gain,kinematic synthesis,shaft coupling,topological synthesis, | en |
| dc.relation.page | 50 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-07-15 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 1.29 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
