請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38838完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄭士康 | |
| dc.contributor.author | Chen-Wei Hsieh | en |
| dc.contributor.author | 謝承緯 | zh_TW |
| dc.date.accessioned | 2021-06-13T16:48:33Z | - |
| dc.date.available | 2005-07-04 | |
| dc.date.copyright | 2005-07-04 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-06-27 | |
| dc.identifier.citation | [1] George Tzanetakis and Perry Cook,” Musical Genre Classification of Audio Signals”, IEEE Transactions on Speech and Audio Process, Vol. 10, No. 5, July 2002
[2] Jurgen Herre, Eric Allamanche, and Christian Ertel,” How Similar do Songs Sound Towards Modeling Human Perception of Musical Similarity“, IEEE workshop on Applications of Signal Processing to Audio and Acoustics, pp. 83-86, Oct 19-22 2003 [3] Sam T. Roweis and Lawrence K. Saul,” Nonlinear Dimensionality Reduction by Locally Linear Embedding,” Science, Vol. 290, No. 5500 pp. 2323-2326, December 22 2000 [4] Sakurai, N., Hattori, M. and Ito, H.,”SOM Associative Memory for Temporal Sequences”, IEEE and INNS International Conference on Neural Networks (IJCNN'02), pp.950-955, Honolulu, May 12-17 2002 [5] Yamada, T., Hattori, M., Morisawa, M. and Ito, H., “Sequential Learning for Associative Memory using Kohonen Feature Map,” IEEE and INNS International Joint Conference on Neural Networks (IJCNN'99), No.555, Washington,D.C., July 10-16 1999 [6] Simon S. Haykin, Neural Networks: A Comprehensive Foundatione 2nd ed., Prentice Hall, 1999 [7] Teuvo Kohonen, Self-Organization and Associative Memory, Third Edition, Berlin, Springer 1989 [8] G. Guimarães, “Temporal Knowledge Discovery for Multivariate Time Series with Enhanced Self-organizing Maps,”IEEE-INNS-ENNS International Joint Conference on Neural Networks (IJCNN'00), Vol. 6, July 24 - 27 2000 [9] Jorge A. Horas and Cristian P. Mankoc, “Behavior of Interactive Neural Networks as Associative Memories,” Neural Networks, IJCNN '99. International Joint Conference , vol. 2, pp.795-797, Jul 1999 [10] M. Heerema and W. A. van Leeuwen, “Derivation of Hebb’s rule,” J.phys. A: Math. Gen. 32, pp. 263-286, 1999 [11] Junya Kitada, Yuko Osana and Masafumi Hagiwara, “Chaotic Episodic Associative Memory,” Integrated Computer-Aided Engineering, Vol.7, No.3, pp.243-251, March 2000 [12] Cheng-Yuan Liou and Shao-Kuo Yuan, “Error tolerant associative memory,” Biological Cybernetics, Vol. 81, pp. 331-342, 1999 [13] H.Ichiki, M.Hagiwara and M.Nakagawa, “Kohonen feature maps as a supervised learning machine,” Proc. Of IEEE International Conference on Neural Networks, pp.1944-1948, March 1993 [14] G.A.Barreto and A.F.R.Araiijo, “Storage and Recall of Complex Temporal Sequences Through a contextually Guided Self-Organizing Neural Network,” Proc. Of IEEE and INNS International Joint Conference on Neural Networks, Session WB2, 2000 58 [15] Chen-Wei Hsien and Shyh-Kang Jeng,” An SOM Based Associative Memory Model for Memorizing Music Information”, WOCMAT, Taipei, 2005 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38838 | - |
| dc.description.abstract | 在電腦音樂的領域裡,人們嘗試各種方法來讓電腦辨識音樂,理解音樂中的音高,音色,和弦,樂曲風格等等。大多數的電腦聆聽系統使用統計方法,或是數位信號處理。統計方法及數位信號處理功能強大具有實用性,但是在也有存在些限制,因此我們嘗試模擬人類記憶的特性作為辨識的基礎。在這篇論文中,作者嘗試建構一個關連式記憶體,利用記憶的關連性做為音樂辨識的基礎。
本論文,使用類神經網路技術來建構關連式記憶體。關於關連式記憶在類神經網路中已經有過許多討論以及實做,像是Hopfield Network與改良式Hopfield Network或是各種Recurrent Neuron Network等等。在此我們使用SOM來建構我們的記憶模型來記憶音樂資訊。相對於其他種類的網路,使用SOM建構的記憶模型對於空間與時間的複雜度需求較低,能夠記憶依時間順序變化的資料,適合用來處理音樂資訊。 | zh_TW |
| dc.description.abstract | In the field of computer music, people have tried many methods to let computers recognize and understand music. For examples, Programs for recognizing pitch, tone, chord, and genre of music have been developed. Most of such music recognition or music-listening systems, people used statistics or digital signal processing to solve this kind of problem. Although these methods are powerful and useful, they have their own limits. In this thesis we try to simulate human memory for recognizing music. We construct an associative memory system, and use the association to recognize music.
Our associative memory system is based on neural network. Associative memory is not a new topic in neural network research. There have been many papers about associative memory since 1989. The major categories of associative memory include Hopfield model, Hopfield-like model, mind-in-a-box, and SOM based associative memory. Here we use SOM as a supervised sequential learning system for memorizing music information. With this system, the input midi music data passes the pre-processing and the training process, to generate memory. The recall will be conducted by pieces of music. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T16:48:33Z (GMT). No. of bitstreams: 1 ntu-94-R92921094-1.pdf: 338046 bytes, checksum: 7e0bf97036f2f45e523f5e59dd41d3de (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | Table of Contents 2
List of Figures 4 List of Table 5 摘要 6 Abstract 7 Chapter 1 Introduction 8 1.1 Motivation 8 1.2 Feature of human brain and memory 8 1.3 Related works 9 1.4 Organization of Thesis 10 Chapter 2 Background 11 2.1 Associative memory 11 2.2 Hopfield model 11 2.2.1 The structure of Hopfield network 12 2.2.2 Storage Phase: Learning rule of Hopfield network 13 2.2.3 Retrieval Phase 14 2.2.4 SOM based associative memory 17 2.3 The Kohonen’S Self-Organizing Feature Maps 19 2.3.1 Introduction 19 2.3.2 The structure of SOM 20 2.3.3 Competitive Process 21 2.3.4 Cooperative Process 22 2.3.5 Adaptive Process 23 2.3.6 Properties of SOM 24 2.4 Time series analysis in SOM 25 Chapter 3 Music Memory System 27 3.1 Introduction 27 3.2 Input process 29 3.3 SOM associative memory 31 3.3.1 The structure of SOM associative memory 31 3.3.2 Sequential learning algorithm 31 3.4 SOM associative memory (AM) 37 Chapter 4 Results and Discussions 41 4.1 Storage capability 41 4.2 Store two pieces of music in the same SOM 44 4.3 Test pieces of different length 48 4.4 Discussions 54 Chapter 5 Conclusions 55 Reference 56 | |
| dc.language.iso | en | |
| dc.subject | 記憶 | zh_TW |
| dc.subject | 音樂 | zh_TW |
| dc.subject | 關聯式記憶 | zh_TW |
| dc.subject | 自我組織圖 | zh_TW |
| dc.subject | SOM | en |
| dc.subject | Music | en |
| dc.subject | Associative Memory | en |
| dc.title | 使用自我組織圖建構的音樂資訊記憶模型 | zh_TW |
| dc.title | An SOM Based Associative Memory Model For Memorizing Music Information | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張智星,劉長遠,蘇文鈺 | |
| dc.subject.keyword | 關聯式記憶,自我組織圖,音樂,記憶, | zh_TW |
| dc.subject.keyword | SOM,Associative Memory,Music, | en |
| dc.relation.page | 58 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-06-27 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 330.12 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
