請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38795
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 楊鏡堂 | |
dc.contributor.author | Chen-Ling Lai | en |
dc.contributor.author | 賴錚泠 | zh_TW |
dc.date.accessioned | 2021-06-13T16:46:37Z | - |
dc.date.available | 2013-07-26 | |
dc.date.copyright | 2011-07-26 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-07-15 | |
dc.identifier.citation | Albenge, O., Lacabanne, C., Beguin, J. D., Koenen, A., and Evo, C., 2002, 'Experimental procedure to measure the blocking energy of liquid on smooth hydrophobic surfaces,' Langmuir, Vol. 18, pp. 8929-8932.
Barthlott, W. and Neinhuis, C., 1997, 'Purity of the sacred lotus, or escape from contamination in biological surfaces,' Planta, Vol. 202, pp. 1-8. Bhushan, B. and Chaejung, Y., 2007, 'Wetting study of patterned surfaces for superhydrophobicity,' Ultramicroscopy, Vol. 107, pp. 1033-1041. Bhushan, B. and Her, E. K., 2010, 'Fabrication of superhydrophobic surfaces with high and low adhesion inspired from rose petal,' Langmuir, Vol. 26, pp. 8207-8217. Bhushan, B., Jung, Y. C., and Koch, K., 2009, 'Micro-, nano- and hierarchical structures for superhydrophobicity, self-cleaning and low adhesion,' Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 367, pp. 1631-1672. Bhushan, B., Koch, K., and Jung, Y. C., 2008, 'Nanostructures for superhydrophobicity and low adhesion,' Soft Matter, Vol. 4, pp. 1799. Bhushan, B. and Nosonovsky, M., 2010, 'The rose petal effect and the modes of superhydrophobicity,' Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, Vol. 368, pp. 4713-4728. Bico, J., Thiele, U., and Quere, D., 2002, 'Wetting of textured surfaces,' Colloids and Surfaces a-Physicochemical and Engineering Aspects, Vol. 206, pp. 41-46. Brochard, F., 1989, 'Motions of droplets on solid-surfaces induced by chemical or thermal-gradients,' Langmuir, Vol. 5, pp. 432-438. Callies, M. and Quéré, D., 2005, 'On water repellency,' Soft Matter, Vol. 1, pp. 55. Cassie, A. B. D., 1948, 'Contact angles,' Discussions of the Faraday Society, Vol. 3, pp. 11. Cassie, A. B. D. and Baxter, S., 1944, 'Wettability of porous surfaces.,' Transactions of the Faraday Society, Vol. 40, pp. 0546-0550. Chang, F. M., Hong, S. J., Sheng, Y. J., and Tsao, H. K., 2009, 'High contact angle hysteresis of superhydrophobic surfaces: Hydrophobic defects,' Applied Physics Letters, Vol. 95, pp. -. Chaudhury, M. K. and Whitesides, G. M., 1992, 'How to make water run uphill,' Science, Vol. 256, pp. 1539-1541. Cheng, Y.-T. and Rodak, D. E., 2005, 'Is the lotus leaf superhydrophobic?,' Applied Physics Letters, Vol. 86, pp. 144101. Cheng, Y.-T., Rodak, D. E., Angelopoulos, A., and Gacek, T., 2005, 'Microscopic observations of condensation of water on lotus leaves,' Applied Physics Letters, Vol. 87, pp. 194112. Choi, S. H. and Newby, B. M. Z., 2003, 'Micrometer-scaled gradient surfaces generated using contact printing of octadecyltrichlorosilane,' Langmuir, Vol. 19, pp. 7427-7435. Daniel, S., 2001, 'Fast drop movements resulting from the phase change on a gradient surface,' Science, Vol. 291, pp. 633-636. Daniel, S., Chaudhury, M. K., and de Gennes, P. G., 2005, 'Vibration-actuated drop motion on surfaces for batch microfluidic processes,' Langmuir, Vol. 21, pp. 4240-4248. Darhuber, A. A., Davis, J. M., Troian, S. M., and Reisner, W. W., 2003, 'Thermocapillary actuation of liquid flow on chemically patterned surfaces,' Physics of Fluids, Vol. 15, pp. 1295-1304. Dorrer, C. and Rühe, J., 2009, 'Some thoughts on superhydrophobic wetting,' Soft Matter, Vol. 5, pp. 51. Feng, L., Zhang, Y. A., Xi, J. M., Zhu, Y., Wang, N., Xia, F., and Jiang, L., 2008, 'Petal effect: A superhydrophobic state with high adhesive force,' Langmuir, Vol. 24, pp. 4114-4119. Ferrari, M., Ravera, F., and Liggieri, L., 2006, 'Preparation of a superhydrophobic surface by mixed inorganic-organic coating,' Applied Physics Letters, Vol. 88, pp. 203125. Gallardo, B. S., Gupta, V. K., Eagerton, F. D., Jong, L. I., Craig, V. S., Shah, R. R., and Abbott, N. L., 1999, 'Electrochemical principles for active control of liquids on submillimeter scales,' Science, Vol. 283, pp. 57-60. Gao, N. and Yan, Y., 2009, 'Modeling superhydrophobic contact angles and wetting transition,' Journal of Bionic Engineering, Vol. 6, pp. 335-340. Gau, H., Herminghaus, S., Lenz, P., and Lipowsky, R., 1999, 'Liquid morphologies on structured surfaces: From microchannels to microchips,' Science, Vol. 283, pp. 46-49. Grunze, M., 1999, 'Surface science - driven liquids,' Science, Vol. 283, pp. 41-42. Guo, Z.-G., Liu, W.-M., and Su, B.-L., 2008, 'A stable lotus-leaf-like water-repellent copper,' Applied Physics Letters, Vol. 92, pp. 063104. He, B., Lee, J., and Patankar, N., 2004, 'Contact angle hysteresis on rough hydrophobic surfaces,' Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 248, pp. 101-104. He, B., Patankar, N. A., and Lee, J., 2003, 'Multiple equilibrium droplet shapes and design criterion for rough hydrophobic surfaces,' Langmuir, Vol. 19, pp. 4999-5003. Herminghaus, S., 2000, 'Roughness-induced non-wetting,' Europhysics Letters, Vol. 52, pp. 165-170. Ichimura, K., 2000, 'Light-driven motion of liquids on a photoresponsive surface,' Science, Vol. 288, pp. 1624-1626. Ishii, D., Yabu, H., and Shimomura, M., 2010, 'Micro droplet transfer between superhydrophobic surfaces via a high adhesive superhydrophobic surface,' Biomedical Engineering Systems and Technologies, Vol. 52, pp. 136-142. Jiang, Y. J., Umemura, A., and Law, C. K., 1992, 'An experimental investigation on the collision behavior of hydrocarbon droplets,' Journal of Fluid Mechanics, Vol. 234, pp. 171-190. Jung, Y. and Bhushan, B., 2007, 'Wetting transition of water droplets on superhydrophobic patterned surfaces,' Scripta Materialia, Vol. 57, pp. 1057-1060. Kataoka, D. E. and Troian, S. M., 1999, 'Patterning liquid flow on the microscopic scale,' Nature, Vol. 402, pp. 794-797. Koch, K., Bhushan, B., Jung, Y. C., and Barthlott, W., 2009, 'Fabrication of artificial lotus leaves and significance of hierarchical structure for superhydrophobicity and low adhesion,' Soft Matter, Vol. 5, pp. 1386. Koch, K., Dommisse, A., Barthlott, W., and Gorb, S., 2007, 'The use of plant waxes as templates for micro- and nanopatterning of surfaces,' Acta Biomaterialia, Vol. 3, pp. 905-909. Lee, J., Moon, H., Fowler, J., Schoellhammer, T., and Kim, C. J., 2002, 'Electrowetting and electrowetting-on-dielectric for microscale liquid handling,' Sensors and Actuators a-Physical, Vol. 95, pp. 259-268. Lee, S. W. and Laibinis, P. E., 2000, 'Directed movement of liquids on patterned surfaces using noncovalent molecular adsorption,' Journal of the American Chemical Society, Vol. 122, pp. 5395-5396. Lin, P. C., Vajpayee, S., Jagota, A., Hui, C. Y., and Yang, S., 2008, 'Mechanically tunable dry adhesive from wrinkled elastomers,' Soft Matter, Vol. 4, pp. 1830-1835. Lin, P. C. and Yang, S., 2009, 'Mechanically switchable wetting on wrinkled elastomers with dual-scale roughness,' Soft Matter, Vol. 5, pp. 1011-1018. Marmur, A., 2003, 'Wetting on hydrophobic rough surfaces: To be heterogeneous or not to be?,' Langmuir, Vol. 19, pp. 8343-8348. McHale, G., Shirtcliffe, N. J., Newton, M. I., Pyatt, F. B., and Doerr, S. H., 2007, 'Self-organization of hydrophobic soil and granular surfaces,' Applied Physics Letters, Vol. 90, pp. 054110. Niemietz, A., Wandelt, K., Barthlott, W., and Koch, K., 2009, 'Thermal evaporation of multi-component waxes and thermally activated formation of nanotubules for superhydrophobic surfaces,' Progress in Organic Coatings, Vol. 66, pp. 221-227. Noscinovsky, M. and Bhushan, B., 2008, 'Patterned nonadhesive surfaces: Superhydrophobicity and wetting regime transitions,' Langmuir, Vol. 24, pp. 1525-1533. Nosonovsky, M. and Bhushan, B., 2007, 'Biomimetic superhydrophobic surfaces: Multiscale approach,' Nano Letters, Vol. 7, pp. 2633-2637. Nosonovsky, M. and Bhushan, B., 2009, 'Multiscale effects and capillary interactions in functional biomimetic surfaces for energy conversion and green engineering,' Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 367, pp. 1511-1539. Nosonovsky, M. and Bhushan, B., 2009, 'Superhydrophobic surfaces and emerging applications: Non-adhesion, energy, green engineering,' Current Opinion in Colloid & Interface Science, Vol. 14, pp. 270-280. Park, C. I., Jeong, H. E., Lee, S. H., Cho, H. S., and Suh, K. Y., 2009, 'Wetting transition and optimal design for microstructured surfaces with hydrophobic and hydrophilic materials,' Journal of Colloid and Interface Science, Vol. 336, pp. 298-303. Patankar, N. A., 2004, 'Mimicking the lotus effect: Influence of double roughness structures and slender pillars,' Langmuir, Vol. 20, pp. 8209-8213. Patankar, N. A., 2003, 'On the modeling of hydrophobic contact angles on rough surfaces,' Langmuir, Vol. 19, pp. 1249-1253. Patankar, N. A., 2004, 'Transition between superhydrophobic states on rough surfaces,' Langmuir, Vol. 20, pp. 7097-7102. Su, Y., Ji, B., Zhang, K., Gao, H., Huang, Y., and Hwang, K., 2010, 'Nano to micro structural hierarchy is crucial for stable superhydrophobic and water-repellent surfaces,' Langmuir, Vol. 26, pp. 4984-4989. Tavana, H., Amirfazli, A., and Neumann, A. W., 2006, 'Fabrication of superhydrophobic surfaces of n-hexatriacontane,' Langmuir, Vol. 22, pp. 5556-5559. Tseng, Y., 2004, 'Fundamental studies on micro-droplet movement by marangoni and capillary effects,' Sensors and Actuators A: Physical, Vol. 114, pp. 292-301. Wenzel, R. N., 1936, 'Resistance of solid surfaces to wetting by water,' Industrial and Engineering Chemistry, Vol. 28, pp. 988-994. Xiao, W., Huang, Z., and He, Z., 2006, 'Tuning the wettability on la[sub 0.7]sr[sub 0.3]mno[sub 3] coatings from superhydrophilicity to superhydrophobicity by hierarchical microstructure,' Applied Physics Letters, Vol. 89, pp. 083101. Xin, B. and Hao, J., 2010, 'Reversibly switchable wettability,' Chemical Society Reviews, Vol. 39, pp. 769. Yang, J. T., Chen, J. C., Huang, K. J., and Yeh, J. A., 2006, 'Droplet manipulation on a hydrophobic textured surface with roughened patterns,' Journal of Microelectromechanical Systems, Vol. 15, pp. 697-707. Yang, J. T., Lai, Y. H., and Hsu, M. H., 2010, 'Enhanced mixing of droplets during coalescence on a surface with a wettability gradient,' Lab on a Chip, Vol. 10, pp. 3149-3156. Yang, J. T., Lai, Y. H., and Shieh, D. B., 2010, 'A microchip fabricated with a vapor-diffusion self-assembled-monolayer method to transport droplets across superhydrophobic to hydrophilic surfaces,' Lab on a Chip, Vol. 10, pp. 499-504. Yang, J. T., Yang, Z. H., Chen, C. Y., and Yao, D. J., 2008, 'Conversion of surface energy and manipulation of a single droplet across micropatterned surfaces,' Langmuir, Vol. 24, pp. 9889-9897. Yang, Z. H., Chiu, C. Y., Yang, J. T., and Yeh, J. A., 2009, 'Investigation and application of an ultrahydrophobic hybrid-structured surface with anti-sticking character,' Journal of Micromechanics and Microengineering, Vol. 19, pp. -. Yu, X., Wang, Z., Jiang, Y., and Zhang, X., 2006, “Surface gradient material: from superhydrophobicity to superhydrophilicity,” Langmuir, Vol. 22, pp. 4483-4486. Yu, Y., Zhao, Z.-H., and Zheng, Q.-S., 2007, 'Mechanical and superhydrophobic stabilities of two-scale surfacial structure of lotus leaves,' Langmuir, Vol. 23, pp. 8212-8216. Zheng, Y., Gao, X., and Jiang, L., 2007, 'Directional adhesion of superhydrophobic butterfly wings,' Soft Matter, Vol. 3, pp. 178. Zheng, Y., Han, D., Zhai, J., and Jiang, L., 2008, 'In situ investigation on dynamic suspending of microdroplet on lotus leaf and gradient of wettable micro- and nanostructure from water condensation,' Applied Physics Letters, Vol. 92, pp. 084106. Zhu, S. J., Li, Y. F., Zhang, J. H., Lu, C. L., Dai, X., Jia, F., Gao, H. N., and Yang, B., 2010, 'Biomimetic polyimide nanotube arrays with slippery or sticky superhydrophobicity,' Journal of Colloid and Interface Science, Vol. 344, pp. 541-546. 方偉峰, 2009, 微生化反應器之研發與物種速暨濃度場之同步診測, 國立清華大學動力機械工程學系博士論文。 馮志凱, 2010, 應用共軛焦顯微術及微 piv 分析微液珠於複合表面之碰撞與混合, 國立台灣大學機械工程學系碩士論文。 楊宗翰, 2009, 液珠在疏水性奈微表面之能階轉換理論及傳輸現象研究, 國立清華大學動力機械工程學系博士論文。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38795 | - |
dc.description.abstract | 本研究主軸有二:一為二顆不同表面張力之微液珠混合研究,提供不同表面張力之工作流體選擇上的參考,使混合更具效率;一為發展可調式結構表面的新式簡單操控方法,以不影響生化液珠本質為前提,提高液珠工作效率。
本研究以蒸氣法於表面上自組裝分子,使表面具有連續梯度而驅動微液珠,以探討微液珠在不同表面張力條件下的碰撞與混合,並利用共軛焦顯微鏡、micro-LIF及微粒子影像測速儀,觀測液珠內部非穩態三維濃度分布與內部流場型態。目前已知微液珠碰撞後結合瞬間會產生巨觀流動,但僅能維持不到300 ms;流動近乎靜止後,液珠混合行為是由擴散而非對流方式所主導。本研究重心為二顆具有不同表面張力大小的液珠之碰撞混合,探討碰撞後所形成的流場及流場對於與混合指標的影響。觀察以微粒子影像測速儀系統計算之速度場,發現表面張力較大者(73.28 mN/m) 碰撞較小者(55.44 mN/m及35.20 mN/m),於結合瞬間會產生一對稱渦流,使初始混合指標較高;然而表面能差僅影響初始混合指標,接觸面積對總體積的比例和高內聚力流體的位置方為影響混合效率的關鍵。 有鑑於自組裝分子形成的梯度表面或結構表面,用於操控液珠時會受限於傳輸距離及方向,故本研究提出一新式操控方法,結合機械力與奈微結構複合表面,以拉伸方式,融合表面結構梯度傳輸概念及以結構調控可逆潤濕性的想法,同時不傷害液珠本身性質,具有高生物相容性。本研究已證明拉伸具有表面結構的彈性元件,確實得以改變液珠在表面上的親疏水性,繼而將研究重心放在設計製作彈性元件、和可操控彈性元件的穩定定量拉伸裝置,同時設計簡單的量測方法。本研究未來將著眼於各維度的傳輸操控,進一步用於液珠混合反應。 本文研究成果可應用於生化醫學檢測及新藥開發上:在數位微流體系統中,提供不同表面張力之工作流體選擇上的參考,使混合更具效率;而新式操控方式簡單且保持生化液珠本質,未來可用於提高液珠傳輸與混合反應的效率。 | zh_TW |
dc.description.abstract | This study investigates two topics. The one is droplets mixing with different surface tensions, and these research results could be the reference for working fluids in the digital microsystem. The other one is developing a novel droplet-manipulation method, which enhances the working efficiency of micro-droplets without destruction of biochemical properties.
To analyze the droplets mixing behaviors, the coalescence are visualized by a high-speed camera, and the internal flow patterns are resolved by micro-PIV and micro-LIF. Experiments show that a pair of symmetrical vortices droplet happen only when the higher-surface-tension droplet collide the lower one, and hence the initial mixing indices are higher. However, the overall mixing efficiency depends on the ratio of contact area to total volume and the location of the fluid with high cohesion instead of surface energy differences. Transport distances and directions of droplets on the surface with molecular or structured density gradients are limited; therefore, this research proposes a new manipulation method. The method stretches elastic surfaces with hierarchical structures to control structured densities and to generate density gradients, so that droplets alter their wettability and move without change of biochemical properties. This study currently has proved that the novel control concept is practical, and focuses on the design and manufacture of pliable components and stable stretch devices. These results can be applied to biochemical tests and drug developments. The study expects that the mixing investigation is useful to mixing efficiency, and that the new manipulation method will advance droplets’ capability of transport and reacting. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T16:46:37Z (GMT). No. of bitstreams: 1 ntu-100-R98522123-1.pdf: 5928646 bytes, checksum: 659ae57044d048568c500c9b7aed348e (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 摘 要 i
Abstract ii 謝 誌 iii 目 錄 v 圖表目錄 x 符號說明 xiv 第一章 前 言 1 1-1 研究背景 1 1-2 研究動機與願景 2 第二章 文獻回顧 5 2-1 自然現象的啟發 5 2-1.1 蓮葉效應 5 2-1.2 花瓣效應 7 2-2 液珠基礎理論 8 2-2.1 尺寸效應 9 2-2.2 接觸角度與潤濕性 10 2-2.3 表面張力與表面自由能 11 2-2.4 遲滯效應 12 2-3 微液珠之碰撞混合研究 13 2-3.1 驅動方式 13 2-3.2 量測方法 13 2-3.3 碰撞混合機制 13 2-3.4 微液珠混合之文獻回顧總結 14 2-4 奈微米結構表面製作技術 15 2-4.1 微結構製作 15 2-4.2 奈米結構製作 16 2-4.3 奈微米複合結構製作 16 2-5 液珠操控方法 17 2-5.1 具可恢復性與可調性之潤濕機制 17 2-5.1.1 光照 17 2-5.1.2 溫度 18 2-5.1.3 溶質與溶劑 18 2-5.1.4 pH值 19 2-5.1.5 電位能 20 2-5.1.6 結構 20 2-5.2 微液珠之傳輸與操控技術 21 2-5.2.1 熱能驅動法 21 2-5.2.2 表面化學能驅動法 22 2-5.2.3 電能驅動法 23 2-5.2.4 光能驅動法 23 2-5.2.5 生化自組裝方法 24 2-5.2.6 表面結構驅動方式 25 2-5.3 操控方法之文獻回顧總結 25 第三章 研究方法 27 3-1 理論分析 28 3-1.1 液珠穩態接觸行為預測 28 3-1.2 液珠表面自由能及穩態能階 31 3-1.3 液珠遲滯效應與表面能障估算 33 3-2 親疏水梯度表面製作 35 3-2.1 自組裝分子選擇 35 3-2.2 親疏水性梯度自組裝分子單層膜表面製作 36 3-3 混合實驗量測 37 3-3.1 表面張力溶液配製與表面張力計 37 3-3.2 實驗儀器與裝置架設 38 3-3.2.1 共軛焦顯微鏡 38 3-3.2.2 高速攝影機 39 3-3.2.3 微量注射泵與微量注射針筒針頭 39 3-3.2.4 彈力針頭支架 40 3-3.3 μ-LIF技術 40 3-3.4 微粒子影像測速儀 41 3-4 奈微複合結構表面 41 3-4.1 表面材質 41 3-4.2 微結構尺寸設計 41 3-4.2.1 長條狀溝槽型結構 42 3-4.2.2 正方形柱狀陣列結構 43 3-4.3 微結構製程 44 3-4.3.1 SU-8母模 44 3-4.3.2 矽晶圓母模 44 3-4.3.3 PDMS翻模 46 3-4.4 奈米結構製程 47 3-5 液珠於可調式元件上的接觸行為觀測 47 3-5.1 靜態行為 48 3-5.1.1 接觸角量測儀 48 3-5.1.2 接觸角分析軟體 49 3-5.2 動態變化 49 第四章 結果與討論 52 4-1 微液珠碰撞前後之變化 52 4-1.1 接觸角變化 52 4-1.2 輪廓變化分析 53 4-1.3 微液珠碰撞前後之表面能差 55 4-2 微液珠之碰撞行為 56 4-3 微液珠混合機制討論 59 4-3.1 微液珠混合影像 59 4-3.2 混合指標 60 4-3.3 微液珠混合之XY截面與三維重建圖 61 4-3.4 碰撞瞬間流場示意圖 64 4-3.5 混合分析 65 4-3.6 與相同表面張力之液珠混合比較 67 4-3.7 混合分析小結 69 4-4 可調式結構表面操控方法 70 4-4.1 操控概念 70 4-4.2 操控方式與裝置 70 4-5 微結構表面徒手拉伸測試 75 4-6 拉伸裝置與量測方法之設計 77 4-6.1 拉伸裝置設計 77 4-6.2 量測方法設計 78 4-6.3 拉伸裝置暨量測方法測試(位移量與表面受力關係) 78 4-7 奈微結構表面理論與實驗結果分析 80 4-7.1 理論分析 80 4-7.2 微結構表面設計與製程 81 4-7.2.1 SU-8母模翻製結果 82 4-7.2.2 塗布Teflon之母模翻製結果 84 4-7.2.3 具有SAM薄膜之矽母模翻製結果 88 4-7.3 微結構製作遭遇之困境與解決方向 89 4-7.3.1 重新設計結構尺寸 89 4-7.3.2 遭遇之困境與解決方向 91 4-7.4 奈米結構表面製作 92 第五章 結論與未來展望 93 5-1 結論 93 5-2 自評 96 5-3 未來展望 96 5-4 甘梯圖 98 第六章 參考文獻 99 | |
dc.language.iso | zh-TW | |
dc.title | 不同表面張力之液珠混合與可調式結構表面操控方法研究 | zh_TW |
dc.title | Droplets Mixing with Different Surface Tensions and Droplet-Manipulation on the Tunable Structured-Surface | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 黃榮芳,趙怡欽,王興華,馬小康,潘國隆 | |
dc.subject.keyword | 液珠,混合,表面張力,操控,可調性,拉伸,結構, | zh_TW |
dc.subject.keyword | droplet,mixing,surfacetension,manipulation,tunability,stretch,structure, | en |
dc.relation.page | 105 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2011-07-15 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 5.79 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。