請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38773完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳達仁(Dar-Zen Chen) | |
| dc.contributor.author | Chia-Chun Wu | en |
| dc.contributor.author | 吳佳峻 | zh_TW |
| dc.date.accessioned | 2021-06-13T16:45:36Z | - |
| dc.date.available | 2016-07-26 | |
| dc.date.copyright | 2011-07-26 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-07-15 | |
| dc.identifier.citation | [1] Banala, S. K., Kim, S. H., Agrawal, S. K., and Scholz, J. P., 2009, “Robot Assisted Gait Training with Active Leg Exoskeleton (ALEX),” IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol. 17, pp. 2-8.
[2] Ekkelenkamp, R., Veneman, J., and Van, Der Kooij, H., 2007, “LOPES : A Lower Extremity Powered Exoskeleton,” IEEE International Conference on Robotics and Automation, Roma, Italy, pp. 3132-3133. [3] Veneman, J. F., Kruidhof, R., Hekman, Edsko E. G., Ekkelenkamp, R., Van Asseldonk, Edwin H. F., and Van Der Kooij, Herman, 2007, “Design and Evaluation of the LOPES Exoskeleton Robot for Interactive Gait Rehabilitation,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol. 15, pp. 379-386. [4] Jezernik, S., Colombo, G., Keller, T., Frueh, H., and Morari, M., 2003, “Robotic Orthosis Lokomat: A Rehabilitation and Research Tool,” Journal of Neuromodulation, 6(2), pp. 108-115. [5] Jezernik, S., Pfister, A., Frueh, H., Colombo, G., and Morari, M., 2002, “Robotic Orthosis Lokomat:Its Use in the Rehabilitation of Locomotion and in the Development of the Biology-Based Neural Controller,” Annual IFESS Conference, Ljubljana, Slovenia, pp. 301-303. [6] Chu, Andrew, Kazerooni, H., and Zoss, Adam, 2005, “On the Biomimietic Design of the Berkeley Lower Extremity Exoskeleton (BLEEX),” IEEE International Conference on Robotics and Automation, Barcelona, Spain, pp. 4345-4352. [7] Kazerooni, H., and Steger, R., 2006, “The Berkeley Lower Extremity Exoskeleton,” ASME Journal of Dynamic Systems, Measurement, and Control, 128(1), pp. 14-25. [8] Kawamoto, H., and Sankai, Y., 2002, “Power Assist System HAL-3 for Gait Disorder Person,” International Conference on Computers Helping People with Special Needs, Vol. 2398, pp. 196-203. [9] Lum, P. S., Burgar, C. G., Shor, P. C., Majmunder, M., and Loos, M. V., 2002, “Robot-Assisted Movement Training Compared with Conventional Therapy Techniques for the Rehabilitation of Upper-Limb Motor Function after Stroke,” Archives of Physical Medicine and Rehabilitation, 83(7), pp. 952-959. [10] Kahn, L. E., Lum, P. S., Rymer, W. Z. and Reinkensmeyer, D. J., 2006, “Robot-Assisted Movement Training for the Stroke-Impaired Arm : Does it matter what the robot does?,” Journal of Rehabilitation Research & Development, 43(5), pp. 619-630. [11] Agrawal, S. K., and Fattah A., 2004, “Theory and Design of an Orthotic Device for Full or Partial Gravity-Balancing of a Human Legs During Motion,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol. 12, pp. 157-165. [12] Fattah, A., and Agrawal, S. K., 2007, “Gravity Balancing of a Human Legs Using an External Orthosis,” IEEE International Conference on Robotics and Automation, Roma, Italy, pp. 3755-3760. [13] Banala, S. K., Agrawal, S. K. Fattah, A., Krishnamoorthy, V., Hsu, W. L., Scholz, J., and Rudlph, K., 2006, “Gravity-Balancing Leg Orthosis and Its Performance Evaluation,” IEEE Transactions on Robotics, 22(6), pp. 1228-1239. [14] Agrawal, S. K., Banala, S. K., Sangwan, V., Krishnamoorthy, V., Scholz, J. P., and Hsu, W. L., 2007, “Assessment of Motion of a Swing Leg and Gait Rehabilitation With a Gravity Balancing Exoskeleton,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, 15(3), pp. 410-420. [15] Kadaba, M. P., Ramakrishnan, H. K., and Wootten, M. E., 1990, “ Measurement of Lower Extremity Kinematics during Level Walking”, Journal of Orthopaedic Research, 8(3), pp. 383-392. [16] Sutherland, D. H., Olshen, R., Cooper, L., Woo, S. L., 1980, “The Development of Mature Gait”, Journal of Bone and Joint Surgery, 62(3), pp. 336-353. [17] 池内 康, 芦原 淳, 2007, “步行輔助裝置,” Japan Patent No. JP 2009-00195. [18] 日木 豊, 2005, “步行輔助裝置,” Japan Patent No. JP 2007-20909. [19] Oatis, C. A., 2004. Kinesiology: The mechanics & pathomechanics of human movement, 1st ed., Lippincott Williams & Wilkins, Philadelphia. [20] Perry, J., 1992. Gait analysis : normal and pathological function, Thorofare, N.J. [21] Lin, P. Y., Shieh, W. B., and Chen, D. Z., 2010, “A Stiffness Matrix Approach for the Design of Statically Balanced Planar-Articulated Manipulators,” Journal of Mechanism and Machine Theory, 45(12), pp. 1877-1891. [22] Lin, P. Y., Shieh, W. B., and Chen, D. Z., 2009, “Design of Perfectly Static-Balanced One-DOF Planar Linkages with Revolute Joints only,” ASME Journal of Mechanical Design, 131(051004). [23] Streit, D. A., and Shin, E., 1993, “Equilibrators for Planar Linkages,” ASME Journal of Mechanical Design, 115(3), pp. 604-611. [24] Nathan, R. H., 1985, “A Constant Force Generation Mechanism,” ASME Journal of Mechanisms, Transmissions, and Automation in Design,107(12), pp. 508-512. [25] Rahman, T., Ramanathan, R., Seliktar, R., and Harwin, W., 1995, “A Simple Technique to Passively Gravity-Balance Articulated Mechanisms,” ASME Journal of Mechanical Design, 117(4), pp. 655-658. [26] Arakelian, V., and Ghazaryan, S., 2008, “Improvement of Balancing Accuracy of Robotic Systems: Application to Leg Orthosis for Rehabilitation Devices,” Journal of Mechanism and Machine Theory, 43(5), pp. 565-575. [27] Deepak, S. R., and Ananthasuresh, G. K., 2009, “Static Balancing of Spring-Loaded Planar Revolute-Joint Linkages without Auxiliary Links,” National Conference on Machines and Mechanism at Nit Durgapur, Durgapur, India, pp. 37-44. [28] Tasi, L. W., 2000. Mechanism Design: Enumeration of kinematic Structure According to Function, Boca Raton, FL : CRC Press, New York. [29] Naval Biodynamics Laboratory, 1988, “Anthropometry and Mass Distribution for Human Analogues, Volume I: Military Male Aviators,” Naval Medical Research and Development Command Bethesda. [30] Chen, D. Z., and Pai, W. M., 2005, “A Methodology for Conceptual Design of Mechanisms by Parsing Design Specifications,” ASME Journal of Mechanical Design, 127(6), pp. 1039-1044. [31] Agrawal, S. K., Gardner, Glenn, and Pledgie, Stephen, 2001, “Design and Fabrication of and Active Gravity Blanaced Planar Mechanism Using Auxiliary Parallelograms,” Journal of Mechanical Design, 123(4), pp. 525-528. [32] Clauser, C. E., McConville, J. T., and Young, J. W., 1969, “Weight, Volume and Center of Mass of Segmens of the Human Body,” AMRL-TR-69-70, Aerospace Medical Research Laboratories, Wright-Patterson Air Force Base, Dayton, Ohio. NASA CR-11262. [33] NASA Reference Publication 1024, 1978, “Anthropometric Source Book: Volume I: Anthropometry for Designers,” NASA. [34] Lin, P. Y., 2011, “On the Design and Application of Spring Balancing Articulated Mechanisms,” PhD Thesis, National Taiwan University, Taipei, Taiwan, Jan., See also URL http://www.ntu.edu.tw. [35] The Aluminum Association, 2004, “International Alloy Designations and Chemical Composition Limits for Wrought Aluminum and Wrought Aluminum Alloys”. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38773 | - |
| dc.description.abstract | 本文提出一個給予肌肉運動系統受損的患者使用之可攜式下肢輔具設計。根據人體下肢的解剖學結構以及運動學,可知當行走時骨盆的旋轉會造成髖關節的位置相對於軀幹會產生改變。因此,髖關節在矢狀面的位置相對於軀幹的改變是不可忽略的,本設計克服多數外骨骼式的下肢輔具的缺點,考慮髖關節的位置相對於軀幹在行走時的改變,並將髖關節視為平面對,將膝關節視為旋轉對,以致於患者穿戴時,下肢輔具和人體下肢在運動時的運動干涉降至最低,因此使運動干涉產生的不舒適感可被消除。此外;為了輔助下肢在正常行走的能力,因此採用被動式彈簧平衡的方式,以消除擺動期時下肢重量對髖關節及膝關節處的負擔。
在本篇論文中,首先根據下肢運動行為的功能需求進行下肢輔具的拓撲合成,接著引入重力平衡的方法降低關節處的負擔,並決定所需的最少彈簧數目以及彈簧的安裝位置,根據彈簧的型式以及所需的彈簧數目,選擇本論文採用的下肢輔具構型。根據NASA所提出的人體參數進行下肢輔具的尺寸合成。最後利用軟體ADAMS對本論文之設計進行模擬及驗證,以及提出估計誤差及降低誤差的方法。 | zh_TW |
| dc.description.abstract | Design of a portable lower limb orthosis for persons with impairments of motor system is presented. Based on the anatomical structure and kinesiology of human lower limbs, it is observed that, during a walking gait, the position of the hip joint significantly varies due to a complex rotation of pelvis with respect to the body trunk. Since the movement of the hip joint is not negligible on the sagittal plane, this design, unlike most exoskeleton type of lower limb orthosis, considers the hip joint as a plane pair and knee joint as a revolute joint. As a result, the kinematic interference between the orthosis and the human lower limb can be minimized and discomfort can be eliminated. Moreover, in order to assist the persons who wear the orthosis to have the normal walking gait, passive device that composes of springs is used to balance the gravitational effect of the lower limb during the swing phase of the gait cycle.
In this paper, topological synthesis of the orthosis according to the functional requirements of the kinematic behavior of the human lower limb is first accomplished. Then, a methodology for the gravity-balancing of the lower limb is presented, and the minimum number of springs and installation of springs are determined. Then, the design is selected in accordance with type of springs and number of springs for achieves gravity-balancing. Based on the anthropometric parameters obtained from NASA, dimensional synthesis of the orthosis is implemented. Design of the orthosis is finally justified by the motion simulation of the orthosis as well as the human lower limb executed on ADAMS. Finally, simulation is accomplished on ADAMS, and the method for errors estimation and reduction is presented. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T16:45:36Z (GMT). No. of bitstreams: 1 ntu-100-R97522625-1.pdf: 3242305 bytes, checksum: 14552270ed1d6c97e3169ee70558096b (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | Chapter 1 Introduction 1
Chapter 2 Kinematic Modeling of Human Lower Limb 5 2.1 Anatomy and Kinesiology of Human Lower Limb 5 2.2 Simplifications of Human Lower Limb Model 6 2.3 Kinematic Modeling of Human Lower Limb 9 Chapter 3 Topological Synthesis of Lower Limb Orthosis 11 3.1 Design Requirements of the Mechanism of Lower Limb Orthosis 11 3.2 Admissible Kinematic Chains 13 3.3 Enumeration of Feasible Lower Limb Orthoses 14 Chapter 4 Selection of Lower Limb Orthosis by Gravity-Balancing Technique 17 4.1 Gravity-Balancing Technique with Spring Only 18 4.2 Gravity-Balancing of Single Chain Type 24 4.3 Gravity-Balancing of Two Branches Chain Type 24 Chapter 5 Gravity-Balancing of Human Lower Limb 27 Chapter 6 Dimensional Synthesis of Lower Limb Orthosis 32 6.1 Anthropomentric of Human Lower Limb Orthosis 32 6.2 Design Optimization 33 6.2.1 Objective Function : Minimize Maximum Springs Force 34 6.2.2 Constraint Functions 34 6.2.3 Result of Design Optimization 36 6.2.4 Functional Simulation of Lower Limb Orthosis 38 Chapter 7 Errors Estimation and Reduction 41 Chapter 8 Conclusion 44 Reference 45 Appendix 51 A.1 Bilingual Terminology Glossary of Anatomy and Kinesiology (English-Chinese) 51 A.2 Displacement of Hip Joint in SI, AP, and ML Axes 52 A.3 Detail Calculation of Bonded Value 53 | |
| dc.language.iso | en | |
| dc.subject | 下肢 | zh_TW |
| dc.subject | 重力平衡 | zh_TW |
| dc.subject | 輔具 | zh_TW |
| dc.subject | 零自由長度彈簧 | zh_TW |
| dc.subject | Lower limb | en |
| dc.subject | zero-free-length spring | en |
| dc.subject | Orthosis | en |
| dc.subject | Gravity-Balancing | en |
| dc.title | 具肌力輔助及復健效能之可攜式下肢輔具概念設計 | zh_TW |
| dc.title | Conceptual Design of Portable Lower Limb Orthosis for Persons with Motor System Impairments | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 謝文賓(Win-Bin Shieh),林正平(Cheng-Pin Lin) | |
| dc.subject.keyword | 輔具,重力平衡,下肢,零自由長度彈簧, | zh_TW |
| dc.subject.keyword | Orthosis,Gravity-Balancing,Lower limb,zero-free-length spring, | en |
| dc.relation.page | 54 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-07-16 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 3.17 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
