請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38742完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳炳煇 | |
| dc.contributor.author | Wei-Ting Chen | en |
| dc.contributor.author | 陳威廷 | zh_TW |
| dc.date.accessioned | 2021-06-13T16:44:18Z | - |
| dc.date.available | 2006-07-04 | |
| dc.date.copyright | 2005-07-04 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-06-30 | |
| dc.identifier.citation | Luo, H., Fedder, G.K., and Carley, L.R., 2000 “A 1 mG lateral CMOS-MEMS accelerometer,” IEEE Micro Electro Mechanical Systems (MEMS`00) , pp. 502-507.
Gustafsson, S.E., Karawacki, E., and Khan, M.N., 1979, “Transient hot-strip method for simultaneously measuring thermal conductivity and thermal diffusivity of solids and fluids,” J Phys D: Appl Phys, 12, pp. 1411. Hsieh, C.M., “Study and Application of TMAH Anisotropic Wet Etching,” Master thesis, Dept. of Mechanical Engineering, NTU, Taipei, Taiwan. Kaltsas, G., and Nassiopoulou, A. G.., 1998, “Frontside bulk silicon micromachining using porous-silicon technology,” Sensors and Actuators A, 65, pp. 175-179. Kaltsas, G., and Nassiopoulou, A. G.., 1999, “Novel C-MOS compatible monolithic silicon gas flow sensor with porous silicon thermal isolation,” Sensors and Actuators A, 76, pp. 133-138. Moser, D., Lenggenhager, R., and Baltes, H., 1991, “Silicon gas flow sensor using industrial CMOS and bipolar IC technology,” Sensors and Actuators A, 27, pp. 591-595. Moser, D., and Baltes, H., 1993, “A high sensitivity CMOS gas flow sensor on a thin dielectric membrane,” Sensors and Actuators A, 37-38, pp. 33-37. Senturia, S.D., 2001, Microsystem Design, Kluwer Academic Publishers, Massachusetts, US, pp. 61-65 Tabata, O., 1996, “pH-controlled TMAH etchants for silicon micromachining,” Sensors and Actuators A, 53, pp.335-339 VIS, 2004, VIS 0.5μm Mixed Singal 2P3M Polyicide 3.3V Design Rule. Witch, H., llling, M., Wechsung., R., 2002, “The Microsystem Market in Automotive: Insights from the NEXUS Market Study 2001,” Witch Technologie Consulting, http://www.wtc –consult.de/deutsch/publika/abstratct/mst-automotive.pdf Wakeham, W.A., Nagashime, A., and Sengers, J.V., 1991, Measurement of transport properties of fluids, Blackwell Scientific, Oxford, UK, pp. 459-460. Yamasue, E., Susa, M., Fukuyama, H., Nagata, K., 2001, “Thermal conductivities of silicon and germanium in solid and liquid states measured by non-stationary hot wire method with silica coated probe,” Journal of CRYSTAL GROWTH, 234, pp. 121-131. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38742 | - |
| dc.description.abstract | This study aims to design and develop a CMOS sensor chip for measuring thermal conductivity of liquids. The CMOS sensor chip is realized by VIS 0.5 μm 2P3M CMOS process with maskless post-CMOS micromachinings. The procedure used to measure thermal conductivity of liquids here is utilized to replace conventional methods which require a great deal of specimen and cost a long measurement time.
The measurement system consists of a heater at the center, four pairs of temperature sensors, specimen of liquid drop and a cavity for thermal insulation. Once a heat flux is applied by the heater, it will cause temperature variations of the sensor. Different kinds of tested liquids will result in different temperature variations of the sensor. The temperature variation will correspond to the resistance variation of temperature sensors. Four kinds of liquids are used to measure in the thesis. The conclusions of experiment results are as follows: a liquid with higher thermal conductivity results in a smaller resistance variation of the temperature sensor. In addition, an experiment system will have a larger time constant as a liquid with higher thermal conductivity is tested. Thermal conductivities of other liquids could be measured as well based on a relation between thermal conductivity and time constant was established by the measuring procedure in the thesis. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T16:44:18Z (GMT). No. of bitstreams: 1 ntu-94-R92522105-1.pdf: 2018461 bytes, checksum: 858e2b39ce9b1fe7ed31cc8495c20583 (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | Table of Contents
Acknowledgement I Abstract II Table of Contents IV List of Tables VII List of Figures VIII Chapter 1 Introduction 1 1.1 General Remarks 1 1.1.1 Thermal conductivities of liquids 1 1.1.2 CMOS-MEMS fabrication technology 1 1.2 Literature Survey 2 1.2.1 A transient hot-wire method 3 1.2.2 A transient hot-disk method 4 1.2.3 CMOS-MEMS fabrication technologies 6 1.3 Motivation and Objectives 6 1.4 Thesis Organization 8 Chapter 2 Design Principle 10 2.1 Principles of the CMOS Sensor 10 2.2 Design of the CMOS Sensor Chip 11 2.2.1 CMOS 0.5μm 2P4M whole chip layout 12 2.2.2 Subsystems of the CMOS sensor chip 12 Chapter 3 Post-CMOS Micromachining 16 3.1 Post-CMOS Micromachining Process Flow of the CMOS Sensor Chip 16 3.2 Isotropic Wet Etching for Removing Metal Layers 18 3.3 Anisotropic Dry Etching for Removing Silicon Dioxide 19 3.4 Anisotropic Wet Etching for removing silicon substrate 21 3.5 Anisotropic Dry Etching for opening pads 23 3.6 Wire bonding 24 Chapter 4 Experimental Apparatus and Procedures 25 4.1 Experimental Apparatus 25 4.2 Tested Liquids 26 4.3 Experimental Procedures 27 4.3.1 Procedure of resistance versus temperature calibration 27 4.3.2 Procedures of measuring thermal conductivity of tested Liquids 28 Chapter 5 Experimental Results and Discussions 30 5.1 Experimental Results of Different Tested Liquids 30 5.2 Experimental Results Comparison of Different Tested Liquids 32 5.3 Uncertainty Analysis 33 Chapter 6 Conclusions and Future Prospects 35 References 60 | |
| dc.language.iso | en | |
| dc.subject | 後製程 | zh_TW |
| dc.subject | 熱傳導係數 | zh_TW |
| dc.subject | 互補式金氧半感測晶片 | zh_TW |
| dc.subject | Post-CMOS Micromachining | en |
| dc.subject | CMOS sensor chip | en |
| dc.subject | Thermal conductivity | en |
| dc.title | 新型互補式金氧半感測晶片應用於液體熱傳導係數之量測 | zh_TW |
| dc.title | A Novel CMOS Sensor Chip for Measuring Thermal Conductivity of Liquids | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳瑤明,李達生 | |
| dc.subject.keyword | 熱傳導係數,互補式金氧半感測晶片,後製程, | zh_TW |
| dc.subject.keyword | Thermal conductivity,CMOS sensor chip,Post-CMOS Micromachining, | en |
| dc.relation.page | 61 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-06-30 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 1.97 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
