Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38742
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳炳煇
dc.contributor.authorWei-Ting Chenen
dc.contributor.author陳威廷zh_TW
dc.date.accessioned2021-06-13T16:44:18Z-
dc.date.available2006-07-04
dc.date.copyright2005-07-04
dc.date.issued2005
dc.date.submitted2005-06-30
dc.identifier.citationLuo, H., Fedder, G.K., and Carley, L.R., 2000 “A 1 mG lateral CMOS-MEMS accelerometer,” IEEE Micro Electro Mechanical Systems (MEMS`00) , pp. 502-507.
Gustafsson, S.E., Karawacki, E., and Khan, M.N., 1979, “Transient hot-strip method for simultaneously measuring thermal conductivity and thermal diffusivity of solids and fluids,” J Phys D: Appl Phys, 12, pp. 1411.
Hsieh, C.M., “Study and Application of TMAH Anisotropic Wet Etching,” Master thesis, Dept. of Mechanical Engineering, NTU, Taipei, Taiwan.
Kaltsas, G., and Nassiopoulou, A. G.., 1998, “Frontside bulk silicon micromachining using porous-silicon technology,” Sensors and Actuators A, 65, pp. 175-179.
Kaltsas, G., and Nassiopoulou, A. G.., 1999, “Novel C-MOS compatible monolithic silicon gas flow sensor with porous silicon thermal isolation,” Sensors and Actuators A, 76, pp. 133-138.
Moser, D., Lenggenhager, R., and Baltes, H., 1991, “Silicon gas flow sensor using industrial CMOS and bipolar IC technology,” Sensors and Actuators A, 27, pp. 591-595.
Moser, D., and Baltes, H., 1993, “A high sensitivity CMOS gas flow sensor on a thin dielectric membrane,” Sensors and Actuators A, 37-38, pp. 33-37.
Senturia, S.D., 2001, Microsystem Design, Kluwer Academic Publishers, Massachusetts, US, pp. 61-65
Tabata, O., 1996, “pH-controlled TMAH etchants for silicon micromachining,” Sensors and Actuators A, 53, pp.335-339
VIS, 2004, VIS 0.5μm Mixed Singal 2P3M Polyicide 3.3V Design Rule.
Witch, H., llling, M., Wechsung., R., 2002, “The Microsystem Market in Automotive: Insights from the NEXUS Market Study 2001,” Witch Technologie Consulting, http://www.wtc –consult.de/deutsch/publika/abstratct/mst-automotive.pdf
Wakeham, W.A., Nagashime, A., and Sengers, J.V., 1991, Measurement of transport properties of fluids, Blackwell Scientific, Oxford, UK, pp. 459-460.
Yamasue, E., Susa, M., Fukuyama, H., Nagata, K., 2001, “Thermal conductivities of silicon and germanium in solid and liquid states measured by non-stationary hot wire method with silica coated probe,” Journal of CRYSTAL GROWTH, 234, pp. 121-131.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38742-
dc.description.abstractThis study aims to design and develop a CMOS sensor chip for measuring thermal conductivity of liquids. The CMOS sensor chip is realized by VIS 0.5 μm 2P3M CMOS process with maskless post-CMOS micromachinings. The procedure used to measure thermal conductivity of liquids here is utilized to replace conventional methods which require a great deal of specimen and cost a long measurement time.
The measurement system consists of a heater at the center, four pairs of temperature sensors, specimen of liquid drop and a cavity for thermal insulation. Once a heat flux is applied by the heater, it will cause temperature variations of the sensor. Different kinds of tested liquids will result in different temperature variations of the sensor. The temperature variation will correspond to the resistance variation of temperature sensors.
Four kinds of liquids are used to measure in the thesis. The conclusions of experiment results are as follows: a liquid with higher thermal conductivity results in a smaller resistance variation of the temperature sensor. In addition, an experiment system will have a larger time constant as a liquid with higher thermal conductivity is tested.
Thermal conductivities of other liquids could be measured as well based on a relation between thermal conductivity and time constant was established by the measuring procedure in the thesis.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T16:44:18Z (GMT). No. of bitstreams: 1
ntu-94-R92522105-1.pdf: 2018461 bytes, checksum: 858e2b39ce9b1fe7ed31cc8495c20583 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontentsTable of Contents
Acknowledgement I
Abstract II
Table of Contents IV
List of Tables VII
List of Figures VIII
Chapter 1 Introduction 1
1.1 General Remarks 1
1.1.1 Thermal conductivities of liquids 1
1.1.2 CMOS-MEMS fabrication technology 1
1.2 Literature Survey 2
1.2.1 A transient hot-wire method 3
1.2.2 A transient hot-disk method 4
1.2.3 CMOS-MEMS fabrication technologies 6
1.3 Motivation and Objectives 6
1.4 Thesis Organization 8
Chapter 2 Design Principle 10
2.1 Principles of the CMOS Sensor 10
2.2 Design of the CMOS Sensor Chip 11
2.2.1 CMOS 0.5μm 2P4M whole chip layout 12
2.2.2 Subsystems of the CMOS sensor chip 12
Chapter 3 Post-CMOS Micromachining 16
3.1 Post-CMOS Micromachining Process Flow of the CMOS Sensor Chip 16
3.2 Isotropic Wet Etching for Removing Metal Layers 18
3.3 Anisotropic Dry Etching for Removing Silicon Dioxide 19
3.4 Anisotropic Wet Etching for removing silicon substrate 21
3.5 Anisotropic Dry Etching for opening pads 23
3.6 Wire bonding 24
Chapter 4 Experimental Apparatus and Procedures 25
4.1 Experimental Apparatus 25
4.2 Tested Liquids 26
4.3 Experimental Procedures 27
4.3.1 Procedure of resistance versus temperature calibration 27
4.3.2 Procedures of measuring thermal conductivity of tested Liquids 28
Chapter 5 Experimental Results and Discussions 30
5.1 Experimental Results of Different Tested Liquids 30
5.2 Experimental Results Comparison of Different Tested Liquids 32
5.3 Uncertainty Analysis 33
Chapter 6 Conclusions and Future Prospects 35
References 60
dc.language.isoen
dc.subject後製程zh_TW
dc.subject熱傳導係數zh_TW
dc.subject互補式金氧半感測晶片zh_TW
dc.subjectPost-CMOS Micromachiningen
dc.subjectCMOS sensor chipen
dc.subjectThermal conductivityen
dc.title新型互補式金氧半感測晶片應用於液體熱傳導係數之量測zh_TW
dc.titleA Novel CMOS Sensor Chip for Measuring Thermal Conductivity of Liquidsen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳瑤明,李達生
dc.subject.keyword熱傳導係數,互補式金氧半感測晶片,後製程,zh_TW
dc.subject.keywordThermal conductivity,CMOS sensor chip,Post-CMOS Micromachining,en
dc.relation.page61
dc.rights.note有償授權
dc.date.accepted2005-06-30
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
1.97 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved