請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38702完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 潘子明 | |
| dc.contributor.author | Yi-Ting Hsieh | en |
| dc.contributor.author | 謝依庭 | zh_TW |
| dc.date.accessioned | 2021-06-13T16:42:41Z | - |
| dc.date.available | 2005-07-13 | |
| dc.date.copyright | 2005-07-13 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-01 | |
| dc.identifier.citation | 王一雄。1997。土壤環境污染與農藥。國立編譯館主編。台北。台灣。90-91頁。
王澄清及吳哲文。2000。應用昆蟲學。國立台灣大學昆蟲學系。台北。台灣。401頁。 尤宗富。2001。轉殖輪點病毒鞘蛋白基因之台農二號番木瓜其果實品質與鞘蛋白基因表現之探討。私立東海大學食品科學系碩士論文。台中。台灣。 包慧俊。2000。木瓜輪點病毒鞘蛋白轉基因木瓜抗病性狀之研究。國立中興大學植物病理學系博士論文。台中。台灣。 林良平。1993。土壤微生物學。南山堂出版社。台北。台灣。135-447 頁。 施明山、陳吉雄及鄧如蘭。1990。台灣農業。台北。台灣。101-106 頁。 郭魁士。1992。土壤學。中國書局。台北。台灣。105-157 頁。 葉錫東及包慧俊。2000。木瓜輪點病毒在我國之侵入、發生、對策及檢討。植物疫情與策略專刊。21-30 頁。 張仲民。1988。普通土壤學。中國書局。永和。台灣。339-344 頁。 張明聰。1992。木瓜水分生理之探討。國立中興大學植物病理學系博士論文。台中。台灣。 楊盛行、孫瓏月、楊鈞凱、魏嘉碧、黃仁勇及許文富。1998。第二核能發電廠及其周圍微生物族群探討。中華民國環境保護學會會誌。21:144-158。 蔡竹龍。2001。木瓜輪點病毒鞘蛋白轉基因木瓜和台農二號木瓜化學組成之探討。私立東海大學食品科學系碩士論文。台中。台灣。 潘子明。2000。基因改造食品檢驗方法總論。基因改造食品之貿易管理檢驗與標示問題研討會論文集。中國農業化學會。27-85頁。 賴文雅。1998。利用AFLP比對系統分析文心蘭栽培種之遺傳圖譜。國立台灣大學植物學研究所碩士論文。台北。台灣。 蘇遠志。2000。基因改造食品之各國管理現況介紹。基因改造食品之貿易檢驗與標示研討會論文集。中國農業化學會。1-26頁。 Abrams, E. S. and Stanton, V. P. 1992. Use of denaturing gradient gel electrophoresis to study conformation transition in nucleic acids. Meth. Enzymol. 212: 71-104. Amann, M., Baldi, C., Klimont, Z. and Schoepp, W. 1995. Integrated assessment of emission control scenarios, including the impact of tropospheric ozone. Water Air Soil Pollut. 85: 2595-2600. Antonio, G., Keijzer-Wolters, A. C., Cacco, G. and van Elsas, J. D. 1999. Assessment of bacterial community structure in soil by polymerase chain reaction and denaturing gradient gel electrophoresis. J. Micro. Biol. Meth. 38: 1-15. Atlas, R. M. and Barth, A. R. 1987. Microbial Ecology. The Benjamin/ Cumming Publishing Company, Inc. USA. p. 294. Avaniss-aghajani, E., Jones, K., Chapman, D. and Brunk, C. 1994. A molecular technique for identification of bacteria using small subunit ribosomal RNA sequences. Biotechniques 17: 144-146. Bloemberg, G. V. and Lugtenberg, B. J. J. 2001. Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr. Opin. Plant Biol. 4: 343-350. Brabara, T.,Wonerow, K. and Paschke, K. 1999. DGGE is more sensitive for the detection of somatic point mutations than direct sequencing. BioTech. 27: 266-268. Bremmer, J. M. and Mulvaney C. S. 1982. Salicylic acid-thiosulfate modification on Kjeldahl method to include nitrate and nitrite. In “Methods of Soil Analysis, Part 2 Chemical And Microbiological Properties. 2nd ed.” A. L. Page (ed). Academic Press, New York. p. 621-622. Carter, P. E., Allison, L. J. and Thomson-Carter, F. M. 1998. AFLP analysis of E. coli O157:H7 populations. VTEC Concerted Action Meeting. Scotlane. Convention on Biological Diversity (CBD), 2005. http://www.biodiv.org/doc/legal/cbd-en.pdf Chang, C. A. 1976. Isolation and comparison of two isolates of papaya ringspot virus in Taiwan. J. Agric. Res. 28: 207-216. Chiter, A., Forbes, J. M. and Blair, G. E. 2000. DNA stability in plant tissues: implications for the possible transfer of genes from genetically modified food. FEBS Lett. 481: 164-168. Clement, B. G., Kehl, L. E., Debord, K. L. and Kitts, C. L. 1998. Terminal restriction fragment patterns (T-RFLPs), a rapid PCR-based method for the comparison of complex bacterial communities. J. Microbio. Methods 31: 135-142. Desai, M., Efstratiou, A., George, R. and Stanley, J. 1999. High-resolution genotyping of Sreptococcus pyogenes serotype M1 isolates by fluorescent amplified fragment length polymorphism. J. Clin. Microbiol. 37: 1948-1952. Devare, M. H., Jones, C. M. and Thies, J. E. 2004. Effect of Cry3Bb transgenic corn and tefluthrin on the soil microbial community:biomass, activity and diversity. J. Environ. Qual. 33: 837-843. Diaz-Bonilla, E. and Robinson, S. 2001. Biotechnology, trade and hunger, in IFPRI 2000-2001. Annual Report. International Food Policy Research Institute. Duffy, M. and Ernst, M. 1999. Does planting GMO seed boost farmers’ profits. Leopold Letter. 11: 1-5. Duke, S. O. 1998. Herbicide resistant crops-their influence on weed science. J. Weed Sci. Technol. 43: 94-100. Eaton, A. D., Clesceri, L. S. and Greenberg, A. E. 1995. Standard methods for the examination of water and wastewater. 19th ed. American Public Health Association, Washington, D. C. Fitch, M. M. M., Manshardt, R. M., Gonsalves, D., Slightom, J. L. and Sanford, J. C. 1992. Virus resistant papaya plants derived from tissues bombarded with the coat protein gene of papaya ringspot virus. Bio/Technology 10: 1466-1472. Gabriela, F. D., Rosado, A. S., Seldin, L. W., van Elsas, J. D. 2001. Analysis of bacterial community structure in sulfurous-oil-containing soils and detection of species carrying dibenzothiophene desulfurization gene. Appl. Environ. Microbiol. 67: 1057-1062. Gardner, W. H. 1986. Water content. In A. Klute (eds), Method of soil analysis, Part 1. Physical and mineralogical methods. 2nd ed. Agronomy Monogr. No. 9. ASA and SSSA, Madison, WI. p. 493-544. Gibson, J. R., Slater, E., Xerry, J., Tompkins, D. S. and Owen, R. J. 1998. Use of an amplified fragment length polymorphism technique to fingerprinting and differentiate isolates of Helicobacter pylori. J. Clin. Microbiol. 36: 2580-2585. Gogos, C., Kalfarentzos, F. and Zoumbos, N. 1990. Effect of different types of total parenteral nutrition on T-lymphocyte subpopulations and NK cells. Am. J. Clin. Nutr. 51: 119-122. Gonsalves, D. and Ishii, M. 1980. Purification and serology of papaya ringspot virus. Phytopathology 70: 1028-1032. Gonsalves, D. 1998. Control of papaya ringspot virus in papaya: a case study. Annu. Rev. Phytopathol. 36: 415-437. Heuer, H., Krsek, M., Baker, P., Smalla, K. and Wellington, E. M. 1997. Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl. Environ. Microbiol. 63: 3233-3241. Hilger, H. A., Barlaz, M. A. and Wollum, A. G. 2000. Lanefill methane oxidation response to vegetation, fertilization and liming. J. Environ. Qual. 29: 324-334. Holben, W. E. 1994. Isolation and purification of bacterial DNA from soil. Methods of Soils Analysis. Part 2. Microbiological and Biochemical Properties. Soil Science Society of America, Madison, USA. p. 727-751. Huang, J. and Pray, C. E. 2002. Economic impacts of Bt cotton in China. The 7th International Symposium on the Biosafety of Genetically Modified Organisms. p. 121-133. Iamtham, S. and Day, A. 2000. Removal of antibiotic resistance genes from transgenic tobacco plastids. Nat. Biotechnol. 18: 1172-1176. James, C. 2004. Global status of commercialized biotech/GM crops: 2004. ISAAA Briefs. No. 32. Joergensen, R. G. and Scheu, S. 1999. Response of soil microorganisms to the addition of carbon, nitrogen and phosphorus in a forest Rendzina. Soil Biol. Biochem. 31: 859-866. Lee, K. E. and Pankhurst, C. E. 1992. Soil organisms and sustainable productivity. Aust. J. Soil Res. 30: 855-892. Liu, W. T., Marsh, T. L., Cheng, H. and Forney, L. J. 1997. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl. Environ. Microbiol. 63: 4516-4522. Lius, S., Manshardt, R. M., Fitch, M. M. M., Slightom, J. L., Sanford, J. C. and Gonsalves, D. 1997. Pathogen-derived resistance provides papaya with effective protection against papaya ringspot virus. Mol. Breed. 3: 161-168. Marsh, T. L. 1999. Terminal restriction fragment length polymorphism (T-RFLP): an emerging method for characterizing diversity among homologous populations of amplification products. Curr. Opin. Microbiol. 2: 323–327. Mclean, E. O. 1982. Soil pH and lime requirement, In “Methods of Soil Analysis Part 2 Chemical and Microbiological Properties” 2nd ed., Page A. L. ed., Academic Press, New York. p. 199-224. Mislivec, P. B., Beuchat, L. R. and Cousin, M. A. 1992. Yeasts and Molds. In C. Vanderzant and D. F. Splittstoesser (eds.), Compendium of methods for the microbiological examination of foods. 3rd ed. American Public Health Association, Washington, D. C. Moeseneder, M. M., Arrieta, J. M., Muyzer, G., Winter, C. and Herndl, G. J. 1999. Optimization of terminal-restriction fragement length polymorphism analysis for complex marine bacterioplankton communities and comparison with denaturing gradient gel electrophoresis. Appl Environ. Microbiol. 65: 3518-3525. Muyzer, G., De Waal, E. D. and Uitterlinden, A. G. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59: 695-700. Nair, S., Schreiber, E., Thong, K. L., Pang, T. and Altwegg, M. 2000. Genotypic characterization of Salmonella typhi by amplified fragment length polymorphism fingerprinting provides increased discrimination as compared to pulsed-field gel electrophoresis and ribotyping. J. Microbiol. Methods 41: 35-43. Ogram, A., Sayler, G. S. and Barkay, T. 1987. The extraction and purification of microbial DNA from sediments. J. Microbiol. Methods 7: 57-66. Owen, M. D. K. 2000. Current use of transgenic herbicide-resistant soybean and corn in the USA. Crop Protection 19: 765-771. Philipon, P. 2000. And now Super Rice? Biofutur. 200: 13. Purcifull, D. E., Edwardson, J. R., Hiebert, E. and Gonsalves, D. 1984. Papaya ringspot virus. 1984. CMI/AAB Descriptions of Plant Viruses, No. 292. Rabenhorst, M. C. 1988. Determination of organic carbon in calcareous soil using dry combustion. Soil Sci. Soc. Am. J. 52: 915-969. Ranjard, L., Poly, F. and Nazaret, S. 2000. Monitoring complex bacterial communities using culture-independent molecular techniques: application to soil environment. Res. Microbiol. 151: 167-177. Sanford, J. C. and Johnston, S. A. 1985. The concept of parasite-derivated resistance genes from the parasite’s own genome. J. Thero. Biol. 113: 395-405. Schuler, T. H., Poppy, G. M., Kerry, B. R. and Denholm, I. 1999. Potential side effect of insect-resistant transgenic plants on arthtopod natural enemies. Trends Biotechnol. 17: 210-216. Singh, B. K., Millard, P., Whiteley, A. S. and Murrell, J. C. 2004. Unravelling rhizosphere-microbial interactions: opportunities and limitations. Trends Microbiol. 12: 386-393. Smalla, K., Wielane, G., Buchner, A., Zock, A., Parzy, J., Kaiser, S., Roskot, N., Heuer, H. and Berg, G. 2001. Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shits revealed. Appl. Environ. Microbiol. 67: 4742-4751. Smit, E., Leeflang, P., Wernars, K. 1997. Detection of shifts in microbial community structure and diversity in soil caused by copper contamination using amplified ribosomal DNA restriction analysis. FEMS Microbiol. Ecol. 23: 249–261. Soon, Y. K. and Abboud, S. 1991. A comparison of some methods for soil organic carbon determination. Commum. Soil. Sci. Plant Anal. 22: 943-954. Stefan, R. J., Goksoyr, J., Bej, A. K. and Atlas, R. M. 1998. Recovery of DNA from soils and sediments. Appl. Environ. Microbiol. 45: 137-161. Tebbe, C. C. and Vahjen, W. 1993. Interference of humic acid and DNA extracted directly from soil in detection and transformation of recombinant DNA from bacteria and a yeast. Appl. Environ. Microbiol. 59: 2655-2657. Torsvik, V. 1980. Isolation of bacterial DNA from soil. Soil Biol. Biochem. 12: 15-21. Trevors, J. T. and van Elsas, J. D. 1995. Nucleic acid in the environment: methods and applications. Springer Press, Berlin, Germany. p. 52. Tsai, Y. L. and Olson, B. M. 1992. Rapid method for separation of bacterial DNA from humic substances in sediments for polymerase chain reaction. Appl. Environ. Microbiol. 57: 1071-1074. Vaneechoutte, M., Beenhouwer, H. D., Claeys, G., Verschraegen, G., Rouck, A. D., Paepe, N., Elaichouni, A. and Portaels, F. 1993. Identification of Mycobacterium species by using amplified ribosomal DNA restriction analysis. J. Clin. Microbiol. 31: 2061-2065. Vinther, F. P., Eilane, F., Lind, A. M. and Elsgaard, L. 1999. Microbial biomass and numbers of denitrifies related to macropore channels in agricultural and forest soils. Soil Biol. Biochem. 31: 603-611. Vos, P., Hogers, R., Bleeker, M., Reijans, M., van de Lee, T., Hornes, M., Frijters, A., Pot, F., Peleman, J., Kuiper, M. and Zabeau, M. 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 23: 4407-4414. Wilson, K. H., Blitchington, R. B. and Greene, R. C. 1990. Amplification of bacterial 16S ribosomal DNA with polymerase chain reaction. J. Clin. Microbiol. 28: 1942-1946. Ye, X., Al-Babili, S., Klöti, A., Zhang, J., Lucca, P., Beyer, P. and Potrykus, I. 2000. Engineering the provitamin A (ß-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287: 303-305. Yeh, S. D. and Gonsalves, D. 1985. Translation of papaya ringspot virus RNA in vitro: detection of a possible polyprotein that is processed for capsid protein, cylindrical-inclusion protein, and amorphous-inclusion protein. Virology 143: 260-271. Zabeau, M. and Vos, P. 1993. Selective restriction fragment amplification: a general method for DNA fingerprinting. Publication 0534858A1. European Patent Office, Munich, Germany. Zhou, J., Bruns, M. A. and Tiedje, J. M. 1996. DNA recovery from soils of diverse composition. Appl. Environ. Microbiol. 62: 316-322. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38702 | - |
| dc.description.abstract | 隨機採集種植基因轉殖木瓜、非基因轉殖木瓜和鄰近無種植木瓜周圍之表土 (0-15 cm) 及底土 (15-30 cm) 土壤進行分析。結果發現此六種土壤水分含量、pH值、總有機碳及總氮含量,各組間無明顯差異。另外,總菌數、真菌數及放線菌數以基因轉殖木瓜周圍之表土含量最高,鄰近無種植木瓜底土含量最低,且表土之菌數均高於底土。使用三種傳統方法及UltraClean Soil DNA Kit 抽取土壤 DNA,以在 -20℃ 使用異丙醇沉澱 DNA 的方法抽取之 DNA 含量最多,而 kit 抽取的 DNA 純度最高。傳統法抽取之DNA 需進一步純化去除腐植酸,才能進行後續的 PCR 反應。由放大片段長度多型性分析、核醣體 DNA 擴增限制酶分析、端點限制片段長度多型性分析及變性梯度膠體電泳四種分析結果顯示,基因轉殖木瓜及非基因轉殖木瓜周圍之表土菌相較為相近,底土菌相亦有相同的趨勢,相似度均在 80% 以上。由此可知,種植基因轉殖木瓜對土壤微生物的影響不大。 | zh_TW |
| dc.description.abstract | To investigate the influence of transgenic papaya on soil microorganisms, we collected upper layer (0-15 cm) and lower layer (15-30 cm) of soil samples around transgenic papaya, non-transgenic papaya and soils that have not been grown plants. The soil properties of moisture content, pH value, total organic carbon content and total nitrogen content were not significantly different among groups. The population of total count, fungi and actinomycete were highest in upper layer soils around transgenic papaya, but lowest in lower layer soils that have not been grown plants. The microbial populations were all higher in upper layer of soils. We compared the efficiency of three kinds of traditional DNA extraction methods as well as UltraClean Soil DNA Kit. The result showed that the amount of DNA was highest followed the method using isopropanol precipitation at -20℃, but the purity of DNA was better using UltraClean Soil DNA Kit. DNA extracted with traditional methods should be purified to remove humid acid in order to proceed polymerase chain reaction (PCR). Amplified fragment length polymorphism (AFLP), amplified ribosomal DNA restriction analysis (ARDRA), terminal restriction fragment length polymorphism (T-RFLP) and denaturing gradient gel electrophoresis (DGGE) analysis indicated that the similarity of soil microorganisms of upper layer soils around transgenic papaya and around non-transgenic papaya was more than 80%. Similar result was observed in lower layer soils. Thus, planting transgenic papayas do limited impact on soil microorganisms. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T16:42:41Z (GMT). No. of bitstreams: 1 ntu-94-R92b47101-1.pdf: 3542738 bytes, checksum: 3c8eb91a970587d3ccb72db54300dc91 (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | 中文摘要 Ι
英文摘要 II 目錄 III 表目錄 VII 圖目錄 VII 縮寫表 X 第一章 前言 1 第二章 文獻回顧 2 2.1. 基因轉殖作物 2 2.1.1. 基因轉殖作物之優點 4 2.1.2. 基因轉殖作物之潛在問題 6 2.2. 木瓜 9 2.2.1. 木瓜輪點病毒 10 2.2.2. 抗輪點病毒基因轉殖木瓜 11 2.3. 生物多樣性 14 2.3.1. 生物多樣性之定義 14 2.3.2. 生物多樣性消失之原因 14 2.3.3. 生物多樣性保育趨勢 15 2.3.4. 土壤微生物多樣性 15 2.4. 分子生物技術應用於微生物群落多樣性之分析 18 2.4.1. 放大片段長度多型性分析 18 2.4.2. 核醣體 DNA 擴增限制酶分析 21 2.4.3. 端點限制片段長度多型性分析 22 2.4.4. 變性梯度膠體電泳 24 第三章 材料與方法 29 3.1. 材料 29 3.1.1. 採樣地點及方法 29 3.1.2. 樣品處理 29 3.1.3. 藥品與試劑 29 3.1.3.1. 土壤總有機碳含量測定 29 3.1.3.2. 土壤總氮含量測定 30 3.1.3.3. 土壤微生物菌數之測定 30 3.1.3.4. 土壤 DNA 之抽取 32 3.1.3.5. 聚合酶鏈反應 32 3.1.3.6. 洋菜膠體電泳分析 33 3.1.3.7. DNA 產物之純化 34 3.1.3.8. 核醣體 DNA 擴增限制酶分析 34 3.1.3.9. 端點限制片段長度多型性分析 34 3.1.3.10. 限制片段長度多型性分析 34 3.1.3.11. 變性梯度膠體電泳分析 35 3.2. 實驗儀器與設備 37 3.3. 方法 39 3.3.1. 土壤基本性質分析 39 3.3.1.1. 土壤 pH 值 39 3.3.1.2. 土壤水分含量 39 3.3.1.3. 土壤總有機碳含量 39 3.3.1.4. 土壤總氮含量 40 3.3.2. 土壤微生物菌數之測定 40 3.3.2.1. 總菌數之測定 40 3.3.2.2. 放線菌數之測定 40 3.3.2.3. 真菌數之測定 41 3.3.3. DNA 之製備與純化 41 3.3.3.1. 使用 Liu et al. (1997) 方法 41 3.3.3.2. 使用 Zhou et al. (1996) 方法 41 3.3.3.3. 使用 Trevors et al. (1995) 方法 42 3.3.3.4. DNA 純化 42 3.3.3.5. UltraClean Soil DNA Kit 抽取法 43 3.3.4. DNA 定量 43 3.3.5. 放大片段長度多型性分析 43 3.3.5.1. 限制酶作用與接合反應 43 3.3.5.2. 片段預放大 44 3.3.5.3. 選擇性放大多型性片段 44 3.3.5.4. 膠體分析放大之片段 44 3.3.6. 核醣體 DNA 擴增限制酶分析 48 3.3.7. 端點限制片段長度多型性分析 48 3.3.8. 變性梯度膠體電泳分析 51 3.3.8.1. PCR 產物製備 51 3.3.8.2. 膠體製備 51 3.3.8.3. 變性梯度膠體電泳之操作 51 第四章 結果與討論 53 4.1. 土壤基本性質之分析 53 4.1.1. 水份含量 53 4.1.2. pH 值 53 4.1.3. 總氮含量 53 4.1.4. 總有機碳含量 53 4.2. 土壤微生物菌數 55 4.2.1. 總菌數 55 4.2.2. 真菌數 55 4.2.3. 放線菌數 55 4.3. DNA 萃取及純化之比較 58 4.4. 以 AFLP 進行生物多樣性分析結果 62 4.5. 以 ARDRA 進行生物多樣性分析結果 67 4.6. 以 T-RFLP 進行生物多樣性分析結果 77 4.7. 以 DGGE 進行生物多樣性分析之結果 83 第五章 結論 87 第六章 參考文獻 89 | |
| dc.language.iso | zh-TW | |
| dc.subject | 變性梯度膠體電泳 | zh_TW |
| dc.subject | 放大片段長度多型性分析 | zh_TW |
| dc.subject | 核醣體 DNA 擴增限制酶 | zh_TW |
| dc.subject | 分析 | zh_TW |
| dc.subject | 端點限制片段長度多型性分析 | zh_TW |
| dc.subject | AFLP | en |
| dc.subject | DGGE | en |
| dc.subject | T-RFLP | en |
| dc.subject | ARDRA | en |
| dc.title | 種植抗輪點病毒基因轉殖木瓜對土壤微生物多樣性之影響 | zh_TW |
| dc.title | Influence of planting transgenic papaya resistant to papaya ringspot virus on the soil microbial biodiversity | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蘇遠志,王一雄,楊秋忠,方繼 | |
| dc.subject.keyword | 放大片段長度多型性分析,核醣體 DNA 擴增限制酶,分析,端點限制片段長度多型性分析,變性梯度膠體電泳, | zh_TW |
| dc.subject.keyword | AFLP,ARDRA,T-RFLP,DGGE, | en |
| dc.relation.page | 99 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-07-01 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 微生物與生化學研究所 | zh_TW |
| 顯示於系所單位: | 微生物學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 3.46 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
