Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38699
標題: 使用SVM標記多種生醫具名實體
Annotating Multiple Types of Biomedical Entities Using Support Vector Machines
作者: Chih Lee
李遲
指導教授: 陳信希(Hsin-Hsi Chen)
關鍵字: 生物資訊,自然語言處理,生醫具名實體,支援向量機,
bioinformatics,NLP,biomedical named entity,support vector machines,
出版年 : 2005
學位: 碩士
摘要: Named entity recognition is a fundamental task in biomedical text mining. Multiple-class entity annotation is more complicated and challenging than single-class entity annotation. In this thesis, we presented a single word classification approach to dealing with the multiple-class entity annotation problem using Support Vector Machines (SVMs). In other words, each token in a sentence is represented by a feature vector and classified as one of the given classes. Orthographical patterns, morphological patterns, results from existing gene/protein name taggers, context, part of speech (POS) tags, tags (class labels) of surrounding tokens, and other information are important features for named entity recognition. In addition, we employed a unique way of extracting and utilizing context information. Due to the huge number of non-entity instances (class ‘O’), we clustered the instances of this class into 5 subclasses to accelerate the SVM training process. We also applied a simple post-processing technique with the help of a dictionary and a post-processing technique via abbreviation extraction.
We presented the performance of our system using 13 different notions of correctness, showing the overall performance of our system is somewhere between 68.16% and 79.91% in terms of f-score, which is comparable to the performance of the top 3 systems in the JNLPBA shared task. Besides various notions of correctness used in evaluation, we defined 5 types of errors and showed how frequently our system made these types of mistakes. The error analysis also revealed the annotation discrepancies among the training and test corpora. Therefore, researchers approaching biomedical named entity recognition with machine learning algorithms should seek to improve their systems as well as be aware of the correctness of the underlying corpus.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38699
全文授權: 有償授權
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
435.77 kBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved