Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38695
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳世雄(Shih-Hsiung Wu)
dc.contributor.authorHui-Jou Chouen
dc.contributor.author周慧柔zh_TW
dc.date.accessioned2021-06-13T16:42:24Z-
dc.date.available2013-08-16
dc.date.copyright2011-08-16
dc.date.issued2011
dc.date.submitted2011-07-17
dc.identifier.citation1. Swamy, K.H. and Goldberg, A.L. (1981) E. coli contains eight soluble proteolytic activities, one being ATP dependent. Nature, 292, 652-654.
2. Kawarabayasi, Y., Sawada, M., Horikawa, H., Haikawa, Y., Hino, Y., Yamamoto, S., Sekine, M., Baba, S., Kosugi, H., Hosoyama, A. et al. (1998) Complete sequence and gene organization of the genome of a hyper-thermophilic archaebacterium, Pyrococcus horikoshii OT3 (supplement). DNA Res, 5, 147-155.
3. Amerik, A., Petukhova, G.V., Grigorenko, V.G., Lykov, I.P., Yarovoi, S.V., Lipkin, V.M. and Gorbalenya, A.E. (1994) Cloning and sequence analysis of cDNA for a human homolog of eubacterial ATP-dependent Lon proteases. FEBS Lett, 340, 25-28.
4. Van Melderen, L. and Aertsen, A. (2009) Regulation and quality control by Lon-dependent proteolysis. Res Microbiol, 160, 645-651.
5. Tsilibaris, V., Maenhaut-Michel, G. and Van Melderen, L. (2006) Biological roles of the Lon ATP-dependent protease. Res Microbiol, 157, 701-713.
6. Maurizi, M.R., Trisler, P. and Gottesman, S. (1985) Insertional mutagenesis of the lon gene in Escherichia coli: lon is dispensable. J Bacteriol, 164, 1124-1135.
7. Bota, D.A., Ngo, J.K. and Davies, K.J. (2005) Downregulation of the human Lon protease impairs mitochondrial structure and function and causes cell death. Free Radic Biol Med, 38, 665-677.
8. Neuwald, A.F., Aravind, L., Spouge, J.L. and Koonin, E.V. (1999) AAA+: A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res, 9, 27-43.
9. Ogura, T. and Wilkinson, A.J. (2001) AAA+ superfamily ATPases: common structure--diverse function. Genes Cells, 6, 575-597.
10. Wickner, S. (1999) Posttranslational Quality Control: Folding, Refolding, and Degrading Proteins. Science, 286, 1888-1893.
11. Rotanova, T.V., Melnikov, E.E., Khalatova, A.G., Makhovskaya, O.V., Botos, I., Wlodawer, A. and Gustchina, A. (2004) Classification of ATP-dependent proteases Lon and comparison of the active sites of their proteolytic domains. Eur J Biochem, 271, 4865-4871.
12. Rotanova, T.V., Botos, I., Melnikov, E.E., Rasulova, F., Gustchina, A., Maurizi, M.R. and Wlodawer, A. (2006) Slicing a protease: structural features of the ATP-dependent Lon proteases gleaned from investigations of isolated domains. Protein Sci, 15, 1815-1828.
13. Smith, C.K., Baker, T.A. and Sauer, R.T. (1999) Lon and Clp family proteases and chaperones share homologous substrate-recognition domains. Proc Natl Acad Sci U S A, 96, 6678-6682.
14. Lee, A.Y., Hsu, C.H. and Wu, S.H. (2004) Functional domains of Brevibacillus thermoruber lon protease for oligomerization and DNA binding: role of N-terminal and sensor and substrate discrimination domains. J Biol Chem, 279, 34903-34912.
15. Li, M., Rasulova, F., Melnikov, E.E., Rotanova, T.V., Gustchina, A., Maurizi, M.R. and Wlodawer, A. (2005) Crystal structure of the N-terminal domain of E. coli Lon protease. Protein Sci, 14, 2895-2900.
16. Rasulova, F.S., Dergousova, N.I., Mel'nikov, E.E., Ginodman, L.M. and Rotanova, T.V. (1998) [Synthesis and characterisation of ATP-dependent forms of Lon-proteinase with modified N-terminal domain from Escherichia coli]. Bioorg Khim, 24, 370-375.
17. Suzuki, C.K., Rep, M., van Dijl, J.M., Suda, K., Grivell, L.A. and Schatz, G. (1997) ATP-dependent proteases that also chaperone protein biogenesis. Trends Biochem Sci, 22, 118-123.
18. Rosen, R., Biran, D., Gur, E., Becher, D., Hecker, M. and Ron, E.Z. (2002) Protein aggregation in Escherichia coli: role of proteases. FEMS Microbiol Lett, 207, 9-12.
19. Vineyard, D., Patterson-Ward, J., Berdis, A.J. and Lee, I. (2005) Monitoring the timing of ATP hydrolysis with activation of peptide cleavage in Escherichia coli Lon by transient kinetics. Biochemistry, 44, 1671-1682.
20. Luke, K.A., Higgins, C.L. and Wittung-Stafshede, P. (2007) Thermodynamic stability and folding of proteins from hyperthermophilic organisms. FEBS Journal, 274, 4023-4033.
21. Ladenstein, R. and Antranikian, G. (1998) Proteins from hyperthermophiles: stability and enzymatic catalysis close to the boiling point of water. Adv Biochem Eng Biotechnol, 61, 37-85.
22. Stetter, K.O. (1996) Hyperthermophiles in the history of life. Ciba Found Symp, 202, 1-10; discussion 11-18.
23. Ward, D.E., Shockley, K.R., Chang, L.S., Levy, R.D., Michel, J.K., Conners, S.B. and Kelly, R.M. (2002) Proteolysis in hyperthermophilic microorganisms. Archaea, 1, 63-74.
24. Maupin-Furlow, J.A., Gil, M.A., Humbard, M.A., Kirkland, P.A., Li, W., Reuter, C.J. and Wright, A.J. (2005) Archaeal proteasomes and other regulatory proteases. Curr Opin Microbiol, 8, 720-728.
25. Besche, H., Tamura, N., Tamura, T. and Zwickl, P. (2004) Mutational analysis of conserved AAA+ residues in the archaeal Lon protease from Thermoplasma acidophilum. FEBS Lett, 574, 161-166.
26. Fukui, T., Eguchi, T., Atomi, H. and Imanaka, T. (2002) A membrane-bound archaeal Lon protease displays ATP-independent proteolytic activity towards unfolded proteins and ATP-dependent activity for folded proteins. J Bacteriol, 184, 3689-3698.
27. Sastre, D.E., Paggi, R.A. and De Castro, R.E. (2011) The Lon protease from the haloalkaliphilic archaeon Natrialba magadii is transcriptionally linked to a cluster of putative membrane proteases and displays DNA-binding activity. Microbiol Res, 166, 304-313.
28. Botos, I., Melnikov, E.E., Cherry, S., Kozlov, S., Makhovskaya, O.V., Tropea, J.E., Gustchina, A., Rotanova, T.V. and Wlodawer, A. (2005) Atomic-resolution crystal structure of the proteolytic domain of Archaeoglobus fulgidus lon reveals the conformational variability in the active sites of lon proteases. J Mol Biol, 351, 144-157.
29. An, Y.J., Lee, C.R., Supangat, S., Lee, H.S., Lee, J.H., Kang, S.G. and Cha, S.S. (2010) Crystallization and preliminary X-ray crystallographic analysis of Lon from Thermococcus onnurineus NA1. Acta Crystallogr Sect F Struct Biol Cryst Commun, 66, 54-56.
30. Cha, S.S., An, Y.J., Lee, C.R., Lee, H.S., Kim, Y.G., Kim, S.J., Kwon, K.K., De Donatis, G.M., Lee, J.H., Maurizi, M.R. et al. (2010) Crystal structure of Lon protease: molecular architecture of gated entry to a sequestered degradation chamber. EMBO J, 29, 3520-3530.
31. Morikawa, M., Izawa, Y., Rashid, N., Hoaki, T. and Imanaka, T. (1994) Purification and characterization of a thermostable thiol protease from a newly isolated hyperthermophilic Pyrococcus sp. Appl Environ Microbiol, 60, 4559-4566.
32. Fukui, T., Atomi, H., Kanai, T., Matsumi, R., Fujiwara, S. and Imanaka, T. (2005) Complete genome sequence of the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1 and comparison with Pyrococcus genomes. Genome Res, 15, 352-363.
33. Twining, S.S. (1984) Fluorescein isothiocyanate-labeled casein assay for proteolytic enzymes. Anal Biochem, 143, 30-34.
34. Goldberg, A.L., Moerschell, R.P., Chung, C.H. and Maurizi, M.R. (1994) ATP-dependent protease La (lon) from Escherichia coli. Methods Enzymol, 244, 350-375.
35. Lanzetta, P.A., Alvarez, L.J., Reinach, P.S. and Candia, O.A. (1979) An improved assay for nanomole amounts of inorganic phosphate. Anal Biochem, 100, 95-97.
36. Garner, M.M. and Revzin, A. (1981) A gel electrophoresis method for quantifying the binding of proteins to specific DNA regions: application to components of the Escherichia coli lactose operon regulatory system. Nucleic Acids Res, 9, 3047-3060.
37. Fried, M. and Crothers, D.M. (1981) Equilibria and kinetics of lac repressor-operator interactions by polyacrylamide gel electrophoresis. Nucleic Acids Res, 9, 6505-6525.
38. Liao, J.H., Hung, C.C., Lee, J.S., Wu, S.H. and Chiou, S.H. (1998) Characterization, cloning, and expression of porcine alpha B crystallin. Biochem Biophys Res Commun, 244, 131-137.
39. Liao, J.H., Lee, J.S. and Chiou, S.H. (2002) Distinct roles of alphaA- and alphaB-crystallins under thermal and UV stresses. Biochem Biophys Res Commun, 295, 854-861.
40. Farahbakhsh, Z.T., Huang, Q.L., Ding, L.L., Altenbach, C., Steinhoff, H.J., Horwitz, J. and Hubbell, W.L. (1995) Interaction of alpha-crystallin with spin-labeled peptides. Biochemistry, 34, 509-516.
41. Schuck, P. (2000) Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys J, 78, 1606-1619.
42. Ruepp, A., Graml, W., Santos-Martinez, M.L., Koretke, K.K., Volker, C., Mewes, H.W., Frishman, D., Stocker, S., Lupas, A.N. and Baumeister, W. (2000) The genome sequence of the thermoacidophilic scavenger Thermoplasma acidophilum. Nature, 407, 508-513.
43. Lee, A.Y., Tsay, S.S., Chen, M.Y. and Wu, S.H. (2004) Identification of a gene encoding Lon protease from Brevibacillus thermoruber WR-249 and biochemical characterization of its thermostable recombinant enzyme. Eur J Biochem, 271, 834-844.
44. Chin, D.T., Goff, S.A., Webster, T., Smith, T. and Goldberg, A.L. (1988) Sequence of the lon gene in Escherichia coli. A heat-shock gene which encodes the ATP-dependent protease La. J Biol Chem, 263, 11718-11728.
45. Riethdorf, S., Volker, U., Gerth, U., Winkler, A., Engelmann, S. and Hecker, M. (1994) Cloning, nucleotide sequence, and expression of the Bacillus subtilis lon gene. J Bacteriol, 176, 6518-6527.
46. Holt, C. and Sawyer, L. (1988) Primary and predicted secondary structures of the caseins in relation to their biological functions. Protein Eng, 2, 251-259.
47. Lo, J.H., Baker, T.A. and Sauer, R.T. (2001) Characterization of the N-terminal repeat domain of Escherichia coli ClpA-A class I Clp/HSP100 ATPase. Protein Sci, 10, 551-559.
48. Parsell, D.A. and Lindquist, S. (1993) The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu Rev Genet, 27, 437-496.
49. Charette, M.F., Henderson, G.W., Doane, L.L. and Markovitz, A. (1984) DNA-stimulated ATPase activity on the lon (CapR) protein. J Bacteriol, 158, 195-201.
50. Lu, B., Yadav, S., Shah, P.G., Liu, T., Tian, B., Pukszta, S., Villaluna, N., Kutejova, E., Newlon, C.S., Santos, J.H. et al. (2007) Roles for the human ATP-dependent Lon protease in mitochondrial DNA maintenance. J Biol Chem, 282, 17363-17374.
51. Fu, G.K., Smith, M.J. and Markovitz, D.M. (1997) Bacterial protease Lon is a site-specific DNA-binding protein. J Biol Chem, 272, 534-538.
52. Sreerama, N. and Woody, R.W. (2000) Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal Biochem, 287, 252-260.
53. Rudyak, S.G., Brenowitz, M. and Shrader, T.E. (2001) Mg2+-linked oligomerization modulates the catalytic activity of the Lon (La) protease from Mycobacterium smegmatis. Biochemistry, 40, 9317-9323.
54. Stahlberg, H., Kutejova, E., Suda, K., Wolpensinger, B., Lustig, A., Schatz, G., Engel, A. and Suzuki, C.K. (1999) Mitochondrial Lon of Saccharomyces cerevisiae is a ring-shaped protease with seven flexible subunits. Proc Natl Acad Sci U S A, 96, 6787-6790.
55. Iyer, L.M., Leipe, D.D., Koonin, E.V. and Aravind, L. (2004) Evolutionary history and higher order classification of AAA+ ATPases. J Struct Biol, 146, 11-31.
56. Tripathi, L.P. and Sowdhamini, R. (2008) Genome-wide survey of prokaryotic serine proteases: analysis of distribution and domain architectures of five serine protease families in prokaryotes. BMC Genomics, 9, 549.
57. Starkova, N.N., Koroleva, E.P., Rumsh, L.D., Ginodman, L.M. and Rotanova, T.V. (1998) Mutations in the proteolytic domain of Escherichia coli protease Lon impair the ATPase activity of the enzyme. FEBS Lett, 422, 218-220.
58. Tsou, C.L. (1993) Conformational flexibility of enzyme active sites. Science, 262, 380-381.
59. Tarry, M., Jaaskelainen, M., Paino, A., Tuominen, H., Ihalin, R. and Hogbom, M. (2011) The Extra-Membranous Domains of the Competence Protein HofQ Show DNA Binding, Flexibility and a Shared Fold with Type I KH Domains. J Mol Biol.
60. Miller, V.L., Taylor, R.K. and Mekalanos, J.J. (1987) Cholera toxin transcriptional activator toxR is a transmembrane DNA binding protein. Cell, 48, 271-279.
61. Gauntlett, J.C., Gebhard, S., Keis, S., Manson, J.M., Pos, K.M. and Cook, G.M. (2008) Molecular analysis of BcrR, a membrane-bound bacitracin sensor and DNA-binding protein from Enterococcus faecalis. J Biol Chem, 283, 8591-8600.
62. Lin, Y.C., Lee, H.C., Wang, I., Hsu, C.H., Liao, J.H., Lee, A.Y., Chen, C. and Wu, S.H. (2009) DNA-binding specificity of the Lon protease alpha-domain from Brevibacillus thermoruber WR-249. Biochem Biophys Res Commun, 388, 62-66.
63. Voos, W. (2009) Mitochondrial protein homeostasis: the cooperative roles of chaperones and proteases. Res Microbiol, 160, 718-725.
64. Ingmer, H. and Brondsted, L. (2009) Proteases in bacterial pathogenesis. Res Microbiol, 160, 704-710.
65. Leonhard, K., Stiegler, A., Neupert, W. and Langer, T. (1999) Chaperone-like activity of the AAA domain of the yeast Yme1 AAA protease. Nature, 398, 348-351.
66. Wickner, S., Gottesman, S., Skowyra, D., Hoskins, J., McKenney, K. and Maurizi, M.R. (1994) A molecular chaperone, ClpA, functions like DnaK and DnaJ. Proc Natl Acad Sci U S A, 91, 12218-12222.
67. Akiyama, Y., Ogura, T. and Ito, K. (1994) Involvement of FtsH in protein assembly into and through the membrane. I. Mutations that reduce retention efficiency of a cytoplasmic reporter. J Biol Chem, 269, 5218-5224.
68. Gottesman, S., Wickner, S. and Maurizi, M.R. (1997) Protein quality control: triage by chaperones and proteases. Genes Dev, 11, 815-823.
69. Liao, J.H., Lin, Y.C., Hsu, J., Lee, A.Y., Chen, T.A., Hsu, C.H., Chir, J.L., Hua, K.F., Wu, T.H., Hong, L.J. et al. (2010) Binding and cleavage of E. coli HUbeta by the E. coli Lon protease. Biophys J, 98, 129-137.
70. Rep, M., van Dijl, J.M., Suda, K., Schatz, G., Grivell, L.A. and Suzuki, C.K. (1996) Promotion of mitochondrial membrane complex assembly by a proteolytically inactive yeast Lon. Science, 274, 103-106.
71. Vieille, C. and Zeikus, G.J. (2001) Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev, 65, 1-43.
72. Sriprapundh, D., Vieille, C. and Zeikus, J.G. (2000) Molecular determinants of xylose isomerase thermal stability and activity: analysis of thermozymes by site-directed mutagenesis. Protein Eng, 13, 259-265.
73. Nakamura, S., Tanaka, T., Yada, R.Y. and Nakai, S. (1997) Improving the thermostability of Bacillus stearothermophilus neutral protease by introducing proline into the active site helix. Protein Eng, 10, 1263-1269.
74. Szilagyi, A. and Zavodszky, P. (2000) Structural differences between mesophilic, moderately thermophilic and extremely thermophilic protein subunits: results of a comprehensive survey. Structure, 8, 493-504.
75. Bieniossek, C., Schalch, T., Bumann, M., Meister, M., Meier, R. and Baumann, U. (2006) The molecular architecture of the metalloprotease FtsH. Proc Natl Acad Sci U S A, 103, 3066-3071.
76. Niwa, H., Tsuchiya, D., Makyio, H., Yoshida, M. and Morikawa, K. (2002) Hexameric ring structure of the ATPase domain of the membrane-integrated metalloprotease FtsH from Thermus thermophilus HB8. Structure, 10, 1415-1423.
77. Botos, I., Melnikov, E.E., Cherry, S., Tropea, J.E., Khalatova, A.G., Rasulova, F., Dauter, Z., Maurizi, M.R., Rotanova, T.V., Wlodawer, A. et al. (2004) The catalytic domain of Escherichia coli Lon protease has a unique fold and a Ser-Lys dyad in the active site. J Biol Chem, 279, 8140-8148.
78. Sonezaki, S., Okita, K., Oba, T., Ishii, Y., Kondo, A. and Kato, Y. (1995) Protein substrates and heat shock reduce the DNA-binding ability of Escherichia coli Lon protease. Appl Microbiol Biotechnol, 44, 484-488.
79. Bonnefoy, E., Almeida, A. and Rouviere-Yaniv, J. (1989) Lon-dependent regulation of the DNA binding protein HU in Escherichia coli. Proc Natl Acad Sci U S A, 86, 7691-7695.
80. Wilkins, M.R., Gasteiger, E., Bairoch, A., Sanchez, J.C., Williams, K.L., Appel, R.D. and Hochstrasser, D.F. (1999) Protein identification and analysis tools in the ExPASy server. Methods Mol Biol, 112, 531-552.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38695-
dc.description.abstractATP-dependent Lon蛋白酶是維持蛋白質功能與結構之衡定的重要成員之一,普遍分布在各種生物體中。在功能方面,Lon能夠分解細胞內不正常累積的蛋白質以及特定的調節蛋白。Lon蛋白酶可大致分為兩種亞型,LonA和LonB。相較於LonB,LonA已廣泛的被學者們研究。先前的研究已經指出極端嗜熱古生菌(Thermococcus kodakaraensis KOD1)的Lon蛋白酶由N端ATP水解酶功能區及C端蛋白水解酶功能區所組成,在宿主體內是以膜蛋白的形式存在,屬於LonB。在本論文中,藉由刪去TK-Lon的穿膜區域,我們設計了1個TK-Lon的突變株蛋白質(TK-LonΔTM),並探討此突變株蛋白質的功能與結構特性。在大量表現並純化出TK-LonΔTM後,實驗證明此突變株蛋白酶具有ATP水解酶與蛋白水解酶活性。利用電泳凝膠位移測定(EMSA),我們發現TK-LonΔTM具有DNA-binding的活性。在伴護功能活性測定實驗中,我們觀察到不論是在加熱誘導或是利用化學試劑破壞使蛋白質不規則聚集的情況下,TK-LonΔTM都能預防變性蛋白質的不規則聚集。在熱穩定性的研究中,利用示差掃描熱分析儀(DSC)可觀察到TK-LonΔTM的熔點(Tm)為98.9℃,我們認為TK-LonΔTM仍然保留原來的極端熱穩定性。在結構方面,遠紫外光圓二色偏光光譜圖顯示TK-LonΔTM以α螺旋為主要二級結構;近紫外光圓二色偏光光譜圖顯示TK-LonΔTM擁有完整的三級結構。進一步利用凝膠過濾層析法、分析級超高速離心儀以及穿透式電子顯微鏡分析TK-LonΔTM的四級結構,我們的結果都顯示TK-LonΔTM會聚集形成六聚體(hexamer),我們認為此突變株與野生型的結構極為相似。這些實驗結果都可以證明Lon蛋白酶的功能與結構特性不只存在於LonA中,也高度保留在LonB中。zh_TW
dc.description.abstractATP-dependent Lon proteases degrade specific short-lived regulatory proteins and are key components of the protein quality control systems in the cell, which are universally distributed in all kingdoms of life. Lon protease can be divided into two subfamilies, LonA and LonB. LonA is well-studied as compared with LonB. Previous studies have shown that Lon protease from Thermococcus kodakaraensis KOD1 (TK-Lon) which belong to LonB is composed of an N-terminal ATPase domain and a C-terminal protease domain and is a membrane-bound protein in its native host. In this study, we designed a TK-Lon mutant protein (TK-LonΔTM) with a deletion of the membrane-anchoring region and characterized its function and structure. TK-LonΔTM was overexpressed in E.coli and purified from soluble fraction displaying ATPase and proteolytic activity. Electrophoresis mobility shift assay showed that TK-LonΔTM has DNA-binding activity. Chaperone activity assay indicated that TK-LonΔTM can prevent aggregation of denature proteins under thermal stress or chemical stress. The melting temperature of TK-LonΔTM was observed at 98.9 ℃ by differential scanning calorimetry, suggesting the extreme thermostable of TK-LonΔTM. Far-UV CD and near-UV CD measurements revealed that TK-LonΔTM consists of α-helices as the major secondary structure and possesses well-defined three-dimensional structure, respectively. Our gel-filtration chromatography assay, analytical ultracentrifugation and transmission electron microscopy all displayed that TK-LonΔTM assembles into hexameric rings that likely mimic the oligomerization state of the holoenzyme. These findings showed that function and structure of Lon protease are conserved in the LonA and LonB subfamilies.en
dc.description.provenanceMade available in DSpace on 2021-06-13T16:42:24Z (GMT). No. of bitstreams: 1
ntu-100-R98B46027-1.pdf: 2491183 bytes, checksum: 9c4d86009f6c135f20401a8bad76e6b1 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontentsTable of contents
謝誌 ............................................................................................................................ IV
中文摘要 ...................................................................................................................... V
Abstract ...................................................................................................................... VI
Abbreviation table ..................................................................................................... VIII
Chapter 1 Introduction ................................................................................................... 1
1-1 The role of Lon protease in organism ................................................................ 1
1-2 Classification of Lon protease ............................................................................ 2
1-3 The function of Lon protease ............................................................................. 3
1-4 The structure of Lon protease ............................................................................. 5
1-5 Hyperthermophilic archaeon .............................................................................. 5
1-6 The goal of this study ......................................................................................... 7
Chapter 2 Materials and Methods .................................................................................. 9
2.1 Sequence analysis ............................................................................................... 9
2.2 Cloning ............................................................................................................... 9
2.3 Expression and Purification .............................................................................. 10
2.4 Protease Assay .................................................................................................. 11
2.5 Peptidase Assay ................................................................................................ 11
2.6 ATPase Assay .................................................................................................... 12
2.7 Electrophoresis Mobility Shift Assay ............................................................... 13
2.8 Chaperone Activity Assay ................................................................................ 14
2.8.1 Under thermal stress .............................................................................. 14
2.8.2 Under chemical stress ............................................................................ 14
2.9 Circular Dichroism (CD) spectra ...................................................................... 15
2.10 Analytical Ultracentrifugation (AUC) ............................................................ 16
2.11 Transmission Electron Microscopy (TEM) .................................................... 17
2.12 Differential Scanning Calorimetry (DSC) ...................................................... 17
2.13 Analytical Gel Filtration Assay ...................................................................... 18
2.14 Surface hydrophobicity .................................................................................. 18
2.15 Autolysis of TK-LonΔTM .............................................................................. 18
2.16 Homology modeling of TK-LonΔTM hexamer structure .............................. 19
Chapter 3 Results ...................................................................................................... 20
3-1 Genome analysis of T. kodakaraensis KOD1 Lon protease ............................. 20
3-2 Expression and purification .............................................................................. 21
3-3 Characterization of proteolytic and ATPase activities of TK-LonΔTM ........... 22
3-4 Characterization of chaperone-like activity of TK-LonΔTM .......................... 23
3-5 Characterization of DNA-binding activity of TK-LonΔTM ............................ 25
3-6 Thermal stability .............................................................................................. 26
3-7 Secondary and tertiary structure ....................................................................... 27
3-8 Oligomerization state of TK-LonΔTM ............................................................ 28
Chapter 4 Discussions ................................................................................................. 30
4-1 Phylogenetic analysis of TK-Lon ..................................................................... 30
4-2 The discrepancy between TK-Lon and TK-LonΔTM for protease and ATPase activity in optimum temperature ............................................................................ 31
4-3 DNA binding and α domain ............................................................................. 32
4-4 Characterization of chaperone-like activity of TK-Lon ................................... 33
4-5 Thermal stability .............................................................................................. 35
4-6 Nature of TK-Lon oligomerization .................................................................. 37
4-7 Physiological roles of multi-functional TK-Lon .............................................. 39
Figures ..................................................................................................................... 40
Figure 1. Domain structures of TK-Lon protease and its mutant design................ 40
Figure 2. Multiple alignments of amino acid sequences of TK-Lon and other LonA proteases ................................................................................................................. 41
Figure 3. Multiple alignments of amino acid sequences of TK-Lon and other LonB proteases ................................................................................................................. 42
Figure 4. SDS-PAGE of purified recombinant TK-Lon ΔTM and TK-LonP ......... 43
Figure 5. Autolysis of TK-Lon ΔTM ...................................................................... 44
Figure 6. Effects of temperature on protease and ATPase activities of TK-Lon ΔTM ........................................................................................................................... 45
Figure 7. Effects of temperature on peptidase activities of TK-Lon ΔTM ............. 46
Figure 8. effect of ATP on protease activities of TKLonΔTM ............................... 47
Figure 9. Chaperone-like activity of TK-LonΔTM under thermal stress ............... 48
Figure 10. Chaperone-like activity of TK-LonΔTM under chemical stress ........... 49
Figure 11. Electrophoretic mobility shift assay ...................................................... 50
Figure 12. Thermostability of TK-LonΔTM measured by CD .............................. 51
Figure 13. Thermal denaturation of TK-Lon ΔTM by differential scanning calorimetry .............................................................................................................. 52
Figure 14. Hydrophobicity measurement ............................................................... 53
Figure 15. Far-ultraviolet circular dichroism spectra ............................................. 54
Figure 16. Near-ultraviolet circular dichroism spectra ........................................... 55
Figure 17. Estimation of the molecular mass of native TK-LonΔTM by analytical gel filtration ............................................................................................................ 56
Figure 18. Sedimentation velocity experiment of TK-LonΔTM ............................ 57
Figure 19. Transmission electron microscopy images of TK-LonΔTM ................ 58
Figure 20. Phylogenetic analysis of Lon protease ( by Jotun Hein Method) ......... 59
Figure 21. The amino acid alignment of α-domains ............................................... 60
Figure 22. Stereo view of homology model TK-LonΔTM ..................................... 62
Tables ....................................................................................................................... 63
Table 1. Strains, Plasmids and Oligonucleotides used in this study ....................... 63
Table 2. Buffer composition used in this study ...................................................... 64
Table 3. The secondary structure ratios of TK-LonΔTM and TK-LonP ................ 65
Table 4. Statistical comparison of the hyperthermophilic, thermophilic and mesophilic Lon proteases ....................................................................................... 66
Table 5. Statistical value of TK-LonΔTM interface interaction ............................. 67
References ................................................................................................................. 68
dc.language.isoen
dc.subject六聚體zh_TW
dc.subjectLonBzh_TW
dc.subject伴護zh_TW
dc.subject極端嗜熱古生菌zh_TW
dc.subjectLon 蛋白&#37238zh_TW
dc.subjectHexameren
dc.subjectChaperoneen
dc.subjectLonBen
dc.subjectThermococcus kodakaraensis KOD1en
dc.subjectLon proteaseen
dc.title極端嗜熱古生菌Thermococcus kodakaraensis Lon蛋白酶功能與結構之研究zh_TW
dc.titleFunction-Structural Analysis of Lon Protease from hyperthermophilic archaeon Thermococcus kodakaraensis KOD1en
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳金榜(Chinpan Chen),徐駿森(Chun-Hua Hsu),李岳倫(Alan Yueh-Luen Lee)
dc.subject.keywordLon 蛋白&#37238,極端嗜熱古生菌,LonB,伴護,六聚體,zh_TW
dc.subject.keywordLon protease,Thermococcus kodakaraensis KOD1,LonB,Chaperone,Hexamer,en
dc.relation.page75
dc.rights.note有償授權
dc.date.accepted2011-07-18
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
2.43 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved