Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38685
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor諶玉真
dc.contributor.authorHo-Gung Tsaien
dc.contributor.author蔡和恭zh_TW
dc.date.accessioned2021-06-13T16:42:00Z-
dc.date.available2005-07-07
dc.date.copyright2005-07-07
dc.date.issued2005
dc.date.submitted2005-07-01
dc.identifier.citationA. Tiselius, Trans. Faraday. Sec. 33 (1937) 524.
Allen, M. P. and Tildesley, D. J. , Computer simulation of
Liquids , Oxford University Press , 1987.
Bonnet, G.; Krichevsky, O.; Libchaber, A. Proc. Natl.
Acad. Sci. U.S.A.1998, 95, 8602.
Boyer, B. Concepts in Biochemistry; Brooks/Cole: Pacific
Grove, CA,1999.
Bundschuh, R.; Hwa, T. Phys. Rev. Lett. 1996, 77, 2822.
Collins, F. and Galas, D. (1993). A new five-year plan for
the U.S. Human Genome Project.Science 262, 43-46.
D. Long, PhD. thesis, Universite´ Paris XI, 1996.
Goddard, N. L.; Bonnet, G.; Krichevsky, O.; Libchaber, A.
Phys. Rev.Lett. 2000, 85 (11), 2400.
Guttmann, A. J.; Sykes, M. F. J. Phys. C: Solid St. Phys.
1973, 6, 945.
J. S. Pedersen, P. Schurtenberger, Macromolecules 29, 7602
(1996)
J. W. Jorgenson and K. D. Lukacs, Anal. Chem. 53 (1981)
1298.
J. W. Jorgenson and K. D. Lukacs, Science 222 (1983) 266.
Metropolis, N. and Ulam, S., “The Monte Carlo method”,
J. Am. Stat.Ass., 44: 335-341 (1949).
Mikkers, F. E. P.; Everaerts, F. M.; Verheggen, T. P. E.
M. J. Chromatogr. 1979, 169, 1.
O. Kratky, G. Porod, Rec. Trav. Chim. 68, 1106 (1949)
Potschke, D., Hickl, P., Ballauff, M., Astrand, P. O., and
Pedersen, J. S.,'Analysis of the conformation of worm-
like chains by small-angle scatteringMonte-Carlo
simulations in comparison to analytical theory'.
Macromolecular Theory and Simulation9(2000) p. 345-353
R. Virtanen, Acta. Polytech, Sand. 123 (1981) 1298.
S. Hjerten, Chromatogr, Rev. 9 (1967) 122.
S. Terabe, K. Otsuka, K. Ichikawa, A. Tsuchiya and T. Ando,
Ana I. Chem. 56 (1984) 111.
Sanger, F., Nicklen, S., and Coulson, A. R. (1977). DNA
sequencing with chain-terminating inhibitors.
Proc.Natl.Acad.Sci. USA 74, 5463-5467.
Sheng, Y. J.; Chen, J. Z. Y.; Tsao, H. K. Macromolecules
2002, 35, 9624.
Vallone, P. M.; Paner, T. M.; Hilario, J.; Lane, M. J.;
Faldasz, B. D.; Benight, A. S. Biopolymer 1999, 50,425.
Wall, F. T.; Hiller L. A. Jr.; Wheeler D. J. J. chem..
Phys. 1954, 22 1036.
許倍銜,以蒙地卡羅法研究高分子中任意位置之兩反應基所形成之
可逆環狀結構之開啟與閉合的轉換機製,
國立臺灣大學化學工程研究所,民國九十三年。
許荐恩,在高分子溶液中進行DNA或小分子之毛細管電泳分離,
國立臺灣大學化學研究所,民國八十九年。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38685-
dc.description.abstract本論文利用蒙地卡羅法及尺度分析,探討了二個主題。第一部份是研究單股DNA模型分子所形成可逆環狀結構的靜態及動態性質。我們所模擬的單股DNA尾端具有一對互補鹼基對,其作用位能為 ,並利用蠕蟲模型來描述其角度彎曲的能量;而開啟-閉合之間的轉換,可由開啟狀態機率隨溫度變化之曲線(Po vs. T)來表現,模擬中發現不論鏈長為何,其開啟狀態的機率會隨著溫度升高而變大,模擬結果指出從閉合狀態到開啟狀態,只與鍵結能量有關,而從開啟狀態到閉合狀態,除了亂度外,還必需考慮到角度彎曲的能量。
第二部份則為研究單股DNA模型分子於有障礙物的平板中之電泳行為,利用放置障礙物阻礙分子鏈的前進速度不一,來達到分離的效果,其作用方式與凝膠電泳相同;經由模擬發現當平板距離太大時,其障礙物相較之下顯得太小,因此並沒有很好的分離效果,但平板距離太小時會發生特殊的現象,即較長的分子鏈由於壓縮變形成長條狀後,反而移動速度比短的分子鏈還快,其鏈長對速度的圖形會呈現打勾的形狀,由於同一個速度下會有二種不同鏈長的分子鏈出現,這對於分離是相當不方便的,因此利用障礙物於平板中的分離效果並不如預期的好。
接下來,我們嘗試在原有的障礙物系統,於帶電分子鏈尾端接上了不帶電的粒子,探討所謂的末端效應。結果顯示,與原有方式得到不同的速度分佈,即分子鏈越長的其移動速度越快,代表末端接上不帶電粒子的效應大於原有的障礙物效應,且其分離的效果會比單純使用障礙物的系統更好,但其整體速度變慢,會拉長分離所需的時間。
zh_TW
dc.description.abstractThere are two topics studied in this work on the basis of Monte Carlo simulation and scaling analysis. Firstly, the diffusion-limited loop formation is investigated for the ssDNA owing to the reversible intrachain reaction. The ssDNA modeled as worm-like chain has reactive sites at both ends with binding energy . The open-to-closed crossover is characterized by the probability curve which depicts the variation of the open-state probability with temperature. According to our study, we find the open-state probability increases as temperature increases. The two-state model is found to be valid. The chain needs to overcome only the binding energy for closed-to-open transition. However, the energy barrier for the open-to-closed transition is found to include both the entropy effect and bending energy.
In the second part of the work, we study the electrophoresis of model ssDNA between two parallel plates with barriers. The barriers can hinder the movements of the chains to achieve the purpose of separation. If the distance between plates (dp) is large compared to the barrier height, the result is similar to the free solution electrophoresis. For small dp, the mobility of the chains decreases at first and then increases as chain length increases. This phenomenon may be attributed to the different degree of compression to the chains of different lengths. An uncharged drag-tag attached to the charged chain is also applied in the work. We find that the end-labeled effect is more significant than the barriers effect. However, the mobility of the end-labeled chain becomes slower and thus it needs more time to separate chains of different sizes.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T16:42:00Z (GMT). No. of bitstreams: 1
ntu-94-R92524078-1.pdf: 1154832 bytes, checksum: b6f263901bc9c20f4f74bed8e5d62e60 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents目錄

謝誌......................................................I
中文摘要................................................III
Abstract..................................................V
目錄.....................................................VI
圖目錄.................................................VIII
表目錄...................................................XI
符號及縮寫說明..........................................XII
第一章 緒論..............................................1
1.1 研究動機及目的....................................1
1.2 分子模擬..........................................5
1.3 文獻回顧..........................................7
第二章 分子模型與模擬方法...............................12
2.1 初始位置.........................................12
2.2 分子移動法.......................................14
2.3 能量模型.........................................15
2.4 蒙地卡羅法.......................................20
第三章 ssDNA尾端位置之反應基所形成之開啟與密合的轉換機制
3.1 二相理論及蠕蟲模型...............................23
3.2 模擬設定.........................................27
3.3 結果與討論.......................................30
第四章 ssDNA模型分子在有障礙物的平板中之電泳行為........46
4.1 電泳及泳動率.....................................46
4.2 模擬設定.........................................49
4.3 結果與討論.......................................51
第五章 結論.............................................63
參考文獻...............................................65
dc.language.isozh-TW
dc.title以蒙地卡羅法研究ssDNA模型分子在有障礙物的平板中之電泳行為zh_TW
dc.titleStudies of Electrophoresis of Model ssDNA between Two Parallel Plates with Barriers by Monte Carlo Simulationsen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳延平,曹恆光,林祥泰
dc.subject.keyword蒙地卡羅,電泳,障礙,模擬,zh_TW
dc.subject.keywordMonte Carlo,electrophoresis,barrier,simulation,en
dc.relation.page66
dc.rights.note有償授權
dc.date.accepted2005-07-04
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  目前未授權公開取用
1.13 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved