請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38682完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李雨 | |
| dc.contributor.author | Chia-Cheng Wu | en |
| dc.contributor.author | 吳嘉成 | zh_TW |
| dc.date.accessioned | 2021-06-13T16:41:53Z | - |
| dc.date.available | 2005-07-08 | |
| dc.date.copyright | 2005-07-08 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-02 | |
| dc.identifier.citation | 參考文獻
[1] Asami, K., Hanai T. & Koizumi N. 1980 “Dielectric approach to suspensions of ellipsoidal particles covered with a shell, in particular reference to biological cells,” Japan. J. Appl. Phys. 19, 359-365. [2] Apell, S. P., Sabin, J. R., Trickey, S. B. & Oddershede, J. 2002 “Shape-dependent molecular polarizabilities”, Int. J. of Quantum Chemistry 86, 35-39 [3] Bordi F., Cametti C., Misasi R. & De Persio R. 1997 “Conductometric properties of human erythrocyte membranes: dependence on haematocrit and alkali metal ions of the suspending medium”, Eur. Biophys. J. 26, 215-225. [4] Cruz, J. M. & Garc´ıa-Diego F. J. 1998 “Dielectrophoretic motion of oblate spheroidal particles: Measurements of motion of red blood cells using the Stokes method”, J. Phys. D: Appl. Phys. 31, 1745–1751. [5] Fung, Y. C. 1993 “Biomechanics: Mechanical Properties of Living Tissues”, Springer-Verlag, New York. [6] Gimsa, J. & Wachner, D. 1998 “A unified resistor-capacitor model for impedance, dielectrophoresis, electrorotation, and induced transmembrane potential”, Biophys. J. 75, 1107–1116. [7] Gimsa, J. & Wachner, D. 1999 “A polarization model overcoming the geometric restrictions of the laplace solution for spheroidal cells: obtaining new equations for field-induced forces and transmembrane potential”, Biophys. J. 77, 1316–1326. [8] Gimsa, J. 2001 “A comprehensive approach to electro-orientation, electrodeformation, dielectrophoresis, and electrorotation of ellipsoidal particles and biological cells”, Bioelectrochemistry 54, 23–31. [9] Gabriely, S., Lau, R. W. & Gabriel, C. 1996 “The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues”, Phys. Med. Biol. 41, 2271–2293. [10] Greenwood, D. T. 1965,“Principles of Dynamics”, Prentice-Hall, London. [11] Holmes, D. 2003 “Microdevices for dielectrophoretic flow- through cell separation”, IEEE 537, 85-90. [12] Happel, J. & Brenner, H. 1986 “Low Reynolds number hydrodynamics”, Leiden, Noordhoff International Publishing. [13] Jones, T. B. 1995 “Electromechanics of particles”, Cambridge University Press. [14] Panton, R. L. 1984“Incompressible Flow”, Wiley, New York. [15] Pohl, H. A. 1978 “Dielectrophoresis : the behavior of neutral matter in nonuniform electric fields”, Cambridge University Press. [16] Stratton, J. A. 1941 “Electromagnetic theory”, McGraw-Hill, New York. [17] S Muoz San Martn, S Munoz San Martin 2003 “A study of the electric field distribution in erythrocyte and rod shape cells from direct RF exposure”, Phys. Med. Biol. 48, 1649-1659. [18] Stepin, L. D. 1965 “Dielectric permeability of a medium with non-uniform ellipsoidal inclusions,” Soviet Phys. Tech. Phys. 10, 768-772. [19] Wang, X., Wang, X. B. & Gascoyne, P. R. C. 1997 “General expressions for dielectrophoretic force and electrorotational torque derived using the Maxwell stress tensor method”, J. of Electrostatics 39, 277-295. [20] Yang, J., Huang, Y. & Wang, X. 1999 “Dielectric properties of human leukocyte subpopulations determined by electrorotation as a cell separation criterion”, Biophys. J. 76, 3307-3314. [21] Zehe A, Ramirez A, Starostenko O 2004“Mathematical modeling of electro-rotation spectra of small particles in liquid solutions: application to human erythrocyte aggregates.” Braz. J. Med. Biol. Res. 37, 173-183. [22] 孫志璿, “以旅波介電泳驅動的二相懸浮槽流的數值研究”,國立台灣大學應用力學研究所碩士論文,2004. [23] 謝鴻彥, “以旅波式介電泳分離全血中血球之模擬”,國立台灣大學應用力學研究所碩士論文,2003. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38682 | - |
| dc.description.abstract | 摘 要
本文以具薄殼的橢球及圓球分別作為模擬紅及白血球的理論模型,利用力學的觀點及數值模擬的方式,在二維電場及流場的微流道中,探討旅波式介電泳作用下血球微粒的受力及運動情形;並針對不同電場電壓、頻率、電極佈置及流場流速等參數進行分析。因不同的微粒能通過介電泳所建立的“力牆”的臨界速度不同,使得吾人可利用不同的電壓和流速,來控制紅血球和白血球是否能通過微流道,以達到選擇性篩選的作用。由於微粒在不同電場頻率下所產生的負介電泳力和旅波式介電泳效應會有所不同,因此吾人也可藉由調控頻率,使不同的微粒產生速度上的差異,進而達到分離的效果。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2021-06-13T16:41:53Z (GMT). No. of bitstreams: 1 ntu-94-R92543064-1.pdf: 14025112 bytes, checksum: 973a2e3769f74827d0a09c5185696b46 (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | 目 錄
摘要.....................................................Ⅰ 目錄.....................................................Ⅱ 圖表目錄.................................................Ⅳ 符號說明...............................................ⅩⅤ 第一章 導論...........................................1 1.1 研究背景........................................1 1.2 研究動機........................................4 1.3 文獻回顧........................................4 1.4 本文架構........................................7 第二章 非均勻電場下粒子受力的數學模式.............9 2.1 紅血球與橢球模型的關係..........................9 2.2 粒子的運動方程式...............................10 2.3 穩態阻力.......................................12 2.4 介電泳理論分析.................................14 第三章 統御方程式與數值方法........................34 3.1 電場分析.......................................34 3.2 流場分析.......................................36 3.3 微粒運動分析...................................37 第四章 計算結果與討論...............................40 4.1 頻率選擇.......................................40 4.2 格點測試與程式驗證.............................42 4.3 微粒運動分析...................................52 4.4 電壓大小與流場流速之比較.......................57 4.5 不同頻率下微粒運動之比較.......................62 4.6 不同電極分佈下微粒的運動分析...................65 第五章 結論與未來展望...............................69 5.1 結論...........................................69 5.2 未來工作.......................................69 參考文獻.................................................71 附圖表...................................................75 | |
| dc.language.iso | zh-TW | |
| dc.subject | 紅血球 | zh_TW |
| dc.subject | 介電泳 | zh_TW |
| dc.subject | 白血球 | zh_TW |
| dc.subject | erythrocyte | en |
| dc.subject | dielectrophoresis | en |
| dc.subject | leukocyte | en |
| dc.title | 介電泳作用下紅血球及白血球在微流道中的運動分析 | zh_TW |
| dc.title | Motion of Erythrocyte and Leukocyte in Micro-channel Flow under the Action of Dielectrophoretic Effects | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 胡文聰,楊政穎 | |
| dc.subject.keyword | 介電泳,紅血球,白血球, | zh_TW |
| dc.subject.keyword | dielectrophoresis,erythrocyte,leukocyte, | en |
| dc.relation.page | 130 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-07-04 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 應用力學研究所 | zh_TW |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 13.7 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
