請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38645
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 鄭榮和 | |
dc.contributor.author | Hung-Yang Yeh | en |
dc.contributor.author | 葉宏揚 | zh_TW |
dc.date.accessioned | 2021-06-13T16:40:22Z | - |
dc.date.available | 2005-07-06 | |
dc.date.copyright | 2005-07-06 | |
dc.date.issued | 2005 | |
dc.date.submitted | 2005-07-04 | |
dc.identifier.citation | [1] Achenbach, J. D., “From ultrasonic to failure prevention,” Elastic Waves and Ultrasonic Nondestructive Evaluation, 1990, pp. 3-15.
[2] Achenbach, J. D., “Quantitative nondestructive evaluation,” International Journal of Solids and Structures, Vol. 37, 2000, pp. 13-27. [3] Adler, L., Rose, J. H. and Mobley, C., ”Ultrasonic method to determine gas porosity in aluminum alloy castings: theory and experiment,” Journal of Applied Physics, Vol. 59, No. 2, 1986, pp. 336-347. [4] Aliabadi, M. H., Nonlinear Fracture and Damage Mechanics, WIT Press, Southampton, 2001. [5] Aravas, N., “On the numerical integration of a class of pressure-dependent plasticity models,” International Journal for Numerical Methods in Engineering, Vol. 24, 1987, pp. 1395-1416. [6] Argon, A. S., Im, J. and Safoglu, R., “Cavity formation from inclusions in ductile fracture,” Metallurgical Transactions A, Vol. 6A, 1975, pp. 825-837. [7] Ashby, M. F., Materials Selection in Mechanical Design, Pergamon Press, Oxford, 1992. [8] Atanackovic, T. M. and Guran, A., Theory of Elasticity for Scientists and Engineers, Birkhäuser, Boston, 2000. [9] Atkins, A. G., “Possible explanation for unexpected departures in hydrostatic tension-fracture strain relations,” Metal Science, Vol. 15, No. 2, 1981, pp. 81-83. [10] Atkins, A. G. and Mai , Y. W., Elastic and Plastic Fracture : Metals, Polymers, Ceramics, Composites, Biological Materials, Ellis Horwood Limited, England, 1985. [11] Augereau, F., Roque, V., Robert, L. and Despaux, G., “Non-destructive testing by acoustic signature of damage level in 304l steel samples submitted to rolling, tensile test and thermal annealing treatments,” Materials Science & Engineering: A266, 1999, pp. 285-294. [12] Bai, Y. L., Xia, M. F., Ke, F. J. and Li, H. L., “statistical microdamage mechanics and damage field evolution,” Theoretical and Applied Fracture Mechanics, Vol. 37, 2001, pp. 1-10. [13] Basu, S. and Narasimhan, R., “finite element simulation of mode i dynamic, ductile fracture initiation,” International Journal of Solids and Structures, Vol. 33, No. 8, 1996, pp. 1191-1207. [14] Becker, R., Needleman, A., Richmond, O. and Tvergaard, V., “Void growth and failure in notched bars,” Journal of the Mechanics and Physics of Solids, Vol. 36, No. 3, 1988, pp. 317-351. [15] Bellenger, E. and Bussy, P., “Phenomenological modeling and numerical simulation of different modes of creep damage evolution,” International Journal of Solids and Structures, Vol. 38, 2001, pp. 577-604. [16] Besson, J., Steglich, D. and Brocks, W., “Modeling of crack growth in round bars and plane strain specimens,” International Journal of Solids and Structures, Vol. 38, 2001, pp. 8259-8284. [17] Bhattacharya, B. and Ellingwood, B., “A CDM analysis of stochastic ductile damage growth and reliability,” Probabilistic Engineering Mechanics, Vol. 14, 1999, pp. 45-54. [18] Birks, A. S., Green, Jr., R. E. and McIntire, P., Nondestructive Testing Handbook, Second Edition, Vol. 7, American Society for Nondestructive Testing, USA, 1991. [19] Brown, L. M. and Embury, J. D., “The initiation and growth of voids at second phase particles,” Proceedings of 3rd International Conference on Strength of Metals and Alloys, London, 1973, pp. 164-169. [20] Brozzo, P., Deluca, B. and Rendina, R., “A new method for the prediction of formability limits in metal sheets, sheet metal forming and formability,” Proceedings of the Seventh Biennial Conference of the International Deep Drawing Research Group, Amsterdam, Netherlands, 1972. [21] Cauvin, A., and Testa, R. B., “Elastoplastic material with isotropic damage,” International Journal of Solids and Structures, Vol. 36, 1999, pp. 727-746. [22] Chaboche, J. L., “The concept of effective stress applied to elasticity and viscoplasticity in the presence of anisotropic damage,” Mechanical Behavior of Anisotropic Solids, Martinus Nijhoff, The Hague, 1982, pp. 737-760. [23] Chandrakanth, S., and Pandey, P. C., “An isotropic damage model for ductile material,” Engineering Fracture Mechanics, Vol. 50, No. 4, 1995, pp. 457-465. [24] Chen, W. F., and Han, D. J., Plasticity for Structural Engineers, Springer-Verlag, New York, 1988. [25] Chu, C. C. and Needleman, C. A., “Void Nucleation Effects in Biaxially Stretched Sheets,” Journal of Engineering Materials and Technology, Transactions of the ASME, Vol. 102, No. 3, 1980, pp. 249-256. [26] Clift, S.E., Hartley, P., Sturgess, C.E.N. and Rowe, G.W., “Fracture prediction in plastic deformation processes,” International Journal of Mechanical Sciences, Vol. 32, 1990, pp. 1-17. [27] Cockcroft, M. G. and Latham, D. J., “Ductility and the Workability of Metals,” Journal of the Institute of Metals, Vol. 96, 1968, pp. 33-39. [28] Dally, J. W., and Riley, W. F., Experimental Stress Analysis, Third Edition, McGraw-Hill, Singapore, 1991. [29] Datta, S. K., Achenbach, J. D., and Rajapakse, Y. S., Elastic Waves and Ultrasonic Nondestructive Evaluation: proceedings of the IUTAM Symposium on Elastic Wave Propagation and Ultrasonic Evaluation, University of Colorado, Boulder, U.S.A., 1990. [30] Deschamps, M. and Bescond, C., “Numerical Method to Recover the Elastic Constants from Ultrasound Group Velocities,” Ultrasonics, Vol. 33, No. 3, 1995, pp. 205-211. [31] Diao, X., “A Statistical Equation of Damage Evolution,” Engineering Fracture Mechanics, Vol. 52, No. 1, 1995, pp. 33-42. [32] Ding, X.D., Zbib, H.M., Hamilton, and C.H., Bayoumi, A.E., “On the stability of biaxial stretching with application to the optimization of superplastic blow-forming,” Journal of Engineering Materials and Technology, Vol. 119, 1997, pp. 26-31. [33] Dowling, N. E., Mechanical Behavior of Materials: Engineering Methods for Deformation, Fracture, and Fatigue, Prentice-Hall, Inc, New Jersey, 1999. [34] Duncombe, E., “Plastic instability and growth of grooves and patches in plates or tubes,” International Journal of Mechanical Sciences, Vol. 14, 1972, pp. 325-337. [35] Dutta, A. and Mukherjee, A.K., “Superplastic forming; an analytical approach,” Materials Science and Engineering, A157, 1992, pp. 9-13. [36] Faleskog, J. and Shih, C. F., “Micromechanics of Coalescence-I. Synergistic Effects of Elasticity, Plastic Yielding and Multi-size-scale Voids,” J. Mech. Phys. Solids, Vol. 45, No. 1, 1997, pp. 21-50. [37] Freudenthal, A. M., The Inelastic Behavior of Solids, Wiley, New York, 1950. [38] Fung, Y. C., Foundations of Solid Mechanics, Prentice-Hall, New Jersey, 1965. [39] Germain, P., Nguyen, Q. and Suquet, P., “Continuum Thermodynamics,” Journal of Applied Mechanics, Transactions ASME, Vol. 50, No. 4b, 1983, pp. 1010-1020. [40] Ghosh, A. K., “Criterion for Ductile Fracture in Sheets under Biaxial Loading,” Metallurgical transactions A, Vol. 7A, No. 4, 1976, pp. 523-533. [41] Giessen, E. van der, Burg, M. W. D. van der, Needleman, A. and Tvergaard, V., ”Void Growth to Creep and Grain Boundary Diffusion at High Triaxialities,” Journal of the Mechanics and Physics of Solids, Vol. 43, No. 1, 1995, pp. 123-165. [42] Gouveia, B. P. P. A., Rodrigues, J. M. C. and Martins, P. A. F., “Ductile Fracture in Metalworking: Experimental and Theoretical Research,” Journal of Materials Processing Technology, Vol. 101, 2000, pp. 52-63. [43] Grassi, R. C. and Cornet, I., “Fracture of Gray Cast Iron Tubes under Biaxial Stresses,” Journal of Applied Mechanics, Vol. 16, 1949, pp. 178-182. [44] Gruber, J. J., Smith, J. M. and Brockelman, R. H., “Ultrasonic Velocity C-scans for Ceramic and Composite Material Characterization,” Materials Evaluation, Vol. 46,No. 1, 1988, pp. 90-96. [45] Gurson, A. L., Plastic Flow and Fracture Behavior of Ductile Materials Incorporating Void Nucleation, Growth and Interaction, Ph.D. Dissertation, Brown University, 1975. [46] Gurson, A. L., “Continuum Theory of Ductile Rupture by Void Nucleation and Growth: part I – Yield Criteria and Flow Rules for Porous Ductile Media,” Journal of Engineering Materials and Technology, Transactions of the ASME, Vol. 99, No. 1, 1977, pp. 2-15. [47] Hansen, N. R. and Schreyer, H. L., “A Thermodynamically Consistent Framework for Theories of Elastoplasticity Coupled with Damage,” International Journal of Solids and Structures, Vol. 31, No. 3, 1994, pp. 359-389. [48] Hart, E.W., “Theory of the tensile test,” Acta Metallurgica, Vol. 15, 1967, pp. 351-355. [49] Hartley P., Sturgess, C. E. N. and Rowe, G. W., “Influence of Friction on the Prediction of Forces, Pressure Distributions and Properties in Upset Forging,” International Journal of Mechanical Sciences, Vol. 22, 1980, pp. 743-753. [50] Hashin, Z., “The Elastic Moduli of Heterogeneous Materials,” Journal of Applied Mechanics, Vol. 29, 1962, pp. 143-150. [51] Hayakawa, K., Murakami, S. and Liu, Y., “An Irreversible Thermodynamics Theory for Elastic-Plastic-Damage Materials,” Eur. J. Mech., A/Solids, Vol. 17, No. 1, 1998, 13-32. [52] Henry, G. and Horstmann, D., De Ferri Metallographia, V, Verlag Stahleisen, Dusseldorf, 1979. [53] Hertzberg, R. W., Deformation and Fracture Mechanics of Engineering Materials, Wiley, New York, 1996. [54] Hibbitt, Karlsson & Sorenson, Inc. ABAQUS/Standard User’s Manual, Vol. II, [55] Hildebrand, B. G., Sterling, S. G. and Price, M. A., “An Evaluation of Three Material Models Used in the Finite Element Simulation of a Sheet Stretching Process,” Journal of Materials Processing Technology, Vol. 103, 2000, pp. 57-64. [56] Hill, R., The Mathematical Theory of Plasticity, Oxford University Press, New York, 1950. [57] Hill, R., “On discontinuous plastic states with special reference to localized necking in thin sheets,” Journal of the Mechanics and Physics of Solids, Vol. 1, 1952, pp. 19-30. [58] Huang, C. C. and Cheng, J. H., “Forging Simulation of Sintered Powder Compacts under various Frictional Conditions,” International Journal of Mechanical Sciences, Vol. 44, 2002, pp. 489-507. [59] Ibijola, E. A., “On Some Fundamental concepts of Continuum Damage Mechanics,” Computer Methods in Applied Mechanics and Engineering, Vol. 191, 2002, pp. 1505-1520. [60] Jain, M., Allin, J. and Lloyd, D. J., “Fracture Limit Prediction Using Ductile Fracture Criteria for Forming of an Automotive Aluminum Sheet,” International Journal of Mechanical Sciences, Vol. 41, 1999, pp. 1273-1288. [61] Jaunzemis, W., Continuum Mechanics, The Macmillan Co., New York, 1967. [62] Jayatilaka, A. de S., Fracture of Engineering Brittle Materials, Applied Science Publishers LTD, Essex, England, 1979. [63] Jeong, H. and Hsu, D. K., “Quantitative Estimation of Material Properties of Porous Ceramics by Means of Composite Micromechanics and Ultrasonic Velocity,” NDT&E International, Vol. 29, No. 2, 1996, pp. 95-101. [64] Jha, A.K. and Kumar, S., “Deformation Characteristics and Fracture Mechanisms during the Cold Forging of Metal Powder Preforms,” International Journal of Machine Tool Design & Research, Vol. 26, 1986, pp. 369-384. [65] Ju, J.W., “On Energy-based Coupled Elastoplastic Damage Theories: Constitutive Modeling and Computational Aspects,” International Journal of Solids and Structures, Vol. 25, No. 7, 1989, pp. 803-833. [66] Kachanov, L. M., Introduction to Continuum Damage Mechanics, Martinus Nijhoff Publishers, Dordrecht, 1986. [67] Kishore, N. N., Sridhar, I. and Iyengar, N. G. R., “Finite Element Modeling of the Scattering of Ultrasonic Waves by Isolated Flaws,” NDT&E International, Vol. 33, 2000, pp. 297-305. [68] Könke, C. “Coupling of Micro- and Macro-Damage Models for the Simulation of Damage Evolution in Ductile Materials,” Computers & Structures, Vol. 64, No. 1-4, 1997, pp. 643-653. [69] Krajcinovic, D., “Constitutive Equations for Damaging Materials,” Journal of Applied Mechanics, Vol. 50, 1983, pp. 355-360. [70] Krajcinovic, D. and Lemaitre, J., Continuum Damage Mechanics: Theory and Applications, Springer-Verlag, Udine, Italy, 1987. [71] Krajcinovic, D., “Damage Mechanics,” Mechanics of Materials, Vol. 8, 1989, pp. 117-197. [72] Krajcinovic, D., Damage Mechanics, Elsevier Science B. V., Amsterdam, The Netherlands, 1996. [73] Krajcinovic, D., “Damage Mechanics: Accomplishments, Trends and Needs,” International Journal of Solids and Structures, Vol. 37, 2000, pp. 267-277. [74] Leckie, F. A. and Hayhurst, D., “Creep Rupture of Structures,” Proc. Royal Society, London, Vol. A340, 1974, pp. 323-347. [75] Lemaitre, J., “Evaluation of Dissipation and Damage in Metals Submitted Dynamic Loading,” Proceedings of ICM1, Kyoto, 1971. [76] Lemaitre, J., “How to Use Damage Mechanics,” Nuclear Engineering and Design, Vol. 80, 1984, pp. 233-245. [77] Lemaitre, J., “A Continuous Damage Mechanics Model for Ductile Fracture,” Journal of Engineering Materials and Technology, Vol. 107, 1985, pp. 83-89. [78] Lemaitre, J. and Chaboche, J. L., Mechanics of Solid Materials, Cambridge University Press, Cambridge, 1985. [79] Lemaitre, J. and Dufailly, J., “Damage Measurements,” Engineering Fracture Mechanics, Vol. 28, No. 5/6, 1987, pp. 643-661. [80] Lemaitre, J., A Course on Damage Mechanics, Springer-Verlag, Berlin, 1992. [81] Lemaitre, J., Desmorat, R. and Sauzay, M., “Anisotropic Damage Law of Evolution,” Eur. J. Mech. A/Solids, Vol. 19, 2000, pp. 187-208. [82] Li, Q.M., “Dissipative Flow Model Based on Dissipative Surface and Irreversible Thermodynamics,” Archive of Applied Mechanics, Vol. 69, 1999, pp. 379-392. [83] Li, Q.M., “Strain Energy Density Failure Criterion,” International Journal of Solids and Structures, Vol. 38, 2001, pp. 6997-7013. [84] Lyon, R. H. and DeJong, R. G., Theory and Application of Statistical Energy Analysis, Butterworth-Heinemann, Boston, 1995. [85] Mahnken, R. and Stein, E., “Parameter Identification for Finite Deformation Elasto-Plasticity in Principal Directions,” Computer Methods in Applied Mechanics and Engineering, Vol. 147, 1997, pp. 17-39. [86] Mahnken, R., “Aspects on the Finite-Element Implementation of the Gurson Model Including Parameter Identification,” International Journal of Plasticity, Vol. 15, 1999, pp. 1111-1137. [87] Mahnken, R., “A Comprehensive Study of a Multiplicative Elastoplasticity Model Coupled to Damage Including Parameter Identification,” Computers and Structures, Vol. 74, 2000, pp. 179-200. [88] Mahnken, R., “Theoretical, Numerical and Identification Aspects of a New Model Class for Ductile Damage,” International Journal of Plasticity, Vol. 18, 2002, pp. 801-831. [89] Malvern, L.E., Introduction to the Mechanics of a Continuous Medium, Prentice-Hall, Inc., Englewood Cliffs, 1969. [90] Mamalis, A. G., Petrossian, G. L. and Manolakos, D. E., “Open-die Forging of Sintered Cylindrical Billets: an Analytical Approach,” Journal of Materials Processing Technology, Vol. 96, 1999, pp. 112-116. [91] Maugin, G. A., The Thermomechanics of Plasticity and Fracture, Cambridge University Press, Cambridge, 1992. [92] Mazars, J. and Pijaudier-Cabot, G., “From Damage to Fracture Mechanics and Conversely: A Combined Approach,” International Journal of Solids and Structures, Vol. 33, No. 20-22, 1996, pp. 3327-3342. [93] McClintock, F. A., “A Criterion for Ductile Fracture by the Growth of Holes,” Journal of Applied Mechanics, Vol. 35, 1968, pp. 363-371. [94] McClintock, F. A., “Plasticity aspects of fracture,” in Fracture, Vol. III, ed. H. Liebowitz, 1971, pp. 47-225. [95] Mendelson, A., Plasticity: Theory and Application, Robert E. Krieger Publishing Company, Malabar, 1983. [96] Meyers, M. A. and Chawla, K. K., Mechanical Behavior of Materials, Prentice-Hall International, New Jersey, 1999. [97] Mori, T., Tanaka, K., “Average Stress in Matrix and Average Energy of Materials with Misfitting Inclusion,” Acta Metallurgica, Vol. 21, 1973, pp. 571-574. [98] Mura, T., Micromechanics of Defects in Solids, Martinus Nijhoff Publishers, Hague, 1982. [99] Murakami, S., “Mechanical Modeling of Material Damage, Journal of Applied Mechanics, Vol. 55, 1988, pp. 280-286. [100] Nagarajan, A., “Ultrasonic Study of Elasticity-Porosity Relationship in Polycrystalline Alumina,” Journal of Applied Physics, Vol. 42, No. 10, 1971, pp. 3693-3696. [101] Needleman, A. and Tvergaard, V., “An Analysis of Ductile Rupture in Notched Bars,” Journal of the Mechanics and Physics of Solids, Vol. 32, No. 6, 1984, pp. 461-490. [102] Needleman, A. and Tvergaard, V., “An Analysis of Ductile Rupture Modes at a Crack Tip,” Journal of the Mechanics and Physics of Solids, Vol. 35, No. 2, 1987, pp. 151-183. [103] Nemat-Nasser, S., Three-Dimensional Constitutive Relations and Ductile Fracture, North-Holland Publishing Company, Amsterdam, 1981. [104] Nemat-Nasser, S. and Hori, M., Micromechanics: Overall Properties of Heterogeneous Materials, Elsevier Science Publishers B. V., Amsterdam, The Netherlands, 1993. [105] Norris, D., Reaugh, J., Moran, B. and Quiñonesa, D., “A Plastic Strain Mean-Stress Criterion for Ductile Fracture,” Journal of Engineering Materials and Technology, Transactions of the ASME, Vol. 100, 1978, pp. 279-286. [106] Oh, H.K., “Determination of ductile fracture (ductility) at any stress state by means of the uniaxial tensile test,” Journal of Materials Processing Technology, Vol. 53, 1995, 582-587. [107] Oyane, M., Sato, T., Okimoto, K. and Shima, Susumu, “Criteria for Ductile Fracture and Their Applications,” Journal of Mechanical Working Technology, Vol. 4, 1980, pp. 65-81. [108] Panakkal, J. P., Ghosh, J. K. and Roy, P. R., “Use of Ultrasonic Velocity for Measurement of Density of Sintered Fuel Pellets,” Journal of Physics D. Applied Physics, Vol. 17, 1984, pp. 1791-1795. [109] Pardoen, T., Doghri, I. and Delannay, F., “ Experimental and Numerical Comparison of Void Growth Models and Void Coalescence Criteria for the Prediction of Ductile Fracture in Copper Bars,” Acta Metallurgica, Vol. 46, No. 2, 1998, pp. 541-552. [110] Pipes, R. B., Blake, Jr., R. A., Gillespie, Jr., J. W. and Carlsson, L. A., Test Methods, Vol. 6, Technomic Publishing Company, USA, 1990. [111] Prigogine, I., Introduction to Thermodynamics of Irreversible Processes, Intersciences, New York, 1961. [112] Rabotnov, Y. N., “Creep Rupture,” Proceedings of the XII International Congress on Applied Mechanics, 1968, pp. 342-349. [113] Rees, D.W.A., “Instability limits to the forming of sheet metals,” Journal of Materials Processing Technology, Vol. 55, 1995, pp. 146-153. [114] Rice, J. R. and Tracey, D. M., “On the Ductile Enlargement of Voids in Triaxial Stress Fields,” J. Mech. Phys. Solids, Vol. 17, 1969, pp. 201-217. [115] Rousselier, G., “Ductile Fracture Models and Their Potential in Local Approach of Fracture,” Nuclear Engineering and Design, Vol. 105, 1987, pp. 97-111. [116] Rousselier, G., “Dissipation in Porous Metal Plasticity and Ductile Fracture,” Journal of the Mechanics and Physics of Solids, Vol. 49, 2001, pp. 1727-1746. [117] Saje, M., Pan, J. and Needleman, A., “Void Nucleation Effects on Shear Localization in Porous Plastic Solids,” International Journal of Fracture, Vol. 19, No. 3, 1982, pp. 163-182. [118] Sato, E. and Kuribayashi, K., “Superplasticity and deformation induced grain growth,” ISIJ International, Vol. 33, No. 8, 1993, pp. 825-832. [119] Sawczuk, A. and Bianchi, G., Plasticity Today: Modeling, Methods and Applications, Elsevier Applied Science Publishers, New York, 1985. [120] Scheider, I. and Brocks, W., “Simulation of cup-cone fracture using the cohesive model,” using the cohesive model,” Engineering Fracture Mechanics, Vol. 70, 2003, pp. 1943-1961. [121] Shockey, D. A., Seaman, L. and Curran, D. R., “The Micro-Statistical Fracture Mechanics Approach to Dynamic Fracture Problems,” International Journal of Fracture, Vol. 27, 1985, pp. 145-157 . [122] Sidoroff, F., “Description of Anisotropic Damage Application to Elasticity,” IUTAM Colloquium, Physical Nonlinearities in Structural Analysis, 1981, pp. 237-244. [123] Simo, J. C. and Ju, J. W., “Strain and Stress-based Continuum Damage Mechanics Model-I. Simulation,” International Journal of Solids and Structures , Vol. 23, 1987a, pp. 821-840. [124] Simo, J. C. and Ju, J. W., “Strain and Stress-based Continuum Damage Mechanics Model-II. Computational Aspects,” International Journal of Solids and Structures , Vol. 23, 1987b, pp. 841-869. [125] Simo, J. C. and Hughes, T. J. R., Computational inelasticity, Springer-Verlag, New York, 1998. [126] Skrzypek, J. J. and Ganczarski, A., Modeling of Material Damage and Failure of Structures, Springer-Verlag, Berlin, 1999. [127] Spitzig, W. A., Smelser, R. E. and Richmond, O., “The Evolution of Damage and Fracture in Iron Compacts with Various Initial Porosities,” Acta Metallurgica, Vol. 36, No. 5, 1988, pp. 1201-1211. [128] Spitzig, W. A., Thompson, R. B. and Jiles, D. C., “Ultrasonic and Magnetic Analyses of Porosity in Iron Compacts,” Metallurgical Transactions A, Vol. 20A, 1989, pp. 571-578. [129] Spitzig, W. A., “Effect of Hydrostatic Pressure on Deformation, Damage Evolution, and Fracture of Iron with Various Initial Porosities,” Acta metallurgica et materialia, Vol. 38, No. 8, 1990, pp. 1445-1453. [130] Swalin, R. A., Thermodynamics of Solids, J. Wiley, New York, 1962. [131] Tai, W. H. and Yang, B. X., “A New Microvoid Damage Model for Ductile Fracture,” Engineering Fracture Mechanics, Vol. 25, 1986, pp. 372-384. [132] Tai, W. H. and Yang, B. X., “A New Damage Mechanics for Ductile Fracture,” Engineering Fracture Mechanics, Vol. 27, 1987, pp. 371-386. [133] Takuda, H., Mori, K., and Hatta, N., “The application of some criteria for ductile fracture to the prediction of the forming limit of sheet metals,” Journal of Materials Processing Technology, Vol. 95, 1999, pp. 116-121. [134] Takuda, H., Mori, K., Takakura, N. and Yamaguchi, “Finite Element Analysis of Limit Strains in Biaxial Stretching of Sheet Metals Allowing for Ductile Fracture,” International Journal of Mechanical Sciences, Vol. 42, 2000, pp. 785-798. [135] Talreja, R., Damage Mechanics of Composite Materials, Elsevier Science Publishers B. V., Amsterdam, The Netherlands, 1994. [136] Thompson, R. B., Buck, O., Smith, J. F. and Spitzig, W. A., “New Ultrasonic Methods for Measuring Deformation and Fracture Related Material States,” Metallurgical Transactions A, Vol. 20A, 1989, pp. 611-618. [137] Thomas, T. Y., Plastic Flow and Fracture in Solids, Academic Press, New York ,1961. [138] Truesdell, C. and Noll, W., “The Nonlinear Field Theories of Mechanics,” Encyclopedia of Physics III/3, S. Flugge, Ed., Springer-Verlag, Berlin, 1965. [139] Tvergaard, V., “Influence of Voids on Shear Band Instabilities under Plane Strain Conditions,” International Journal of Fracture, Vol. 17, No. 4, 1981, pp. 389-407. [140] Tvergaard, V. and Needleman, A., “Analysis of the Cup-Cone Fracture in a Round Tensile Bar,” Acta Metallurgica, Vol. 32, No. 1, 1984, pp. 157-169. [141] Tvergaard, V. and Hutchinson, J. W., “The Relation between Crack Growth Resistance and Fracture Process Parameters in Elastic-Plastic Solids,” Journal of the Mechanics and Physics of Solids, Vol. 40. No. 6, 1992, pp. 1377-1397. [142] Tvergaard, V. and Hutchinson, J. W., “Two Mechanisms of Ductile Fracture: Void by Void Growth versus Multiple Void Interaction,” International Journal of Solids and Structures, Vol. 39, 2002, pp. 3581-3597. [143] Vroonhoven, J. C. W. van and Borst, R. de, “Combination of fracture and damage mechanics for numerical failure analysis,” International Journal of Solids and Structures, Vol. 36, 1999, pp. 1169-1191. [144] Venkata Reddy, N., Dixit, P. M. and Lal, G. K., “Ductile Fracture Criteria and its Prediction in Axisymmetric Drawing,” International Journal of Machine Tools & Manufacture, Vol. 40, 2000, pp. 95-111. [145] Voyiadjis, G. Z., Woody Ju, J. W. and Chaboche, J. L., Damage Mechanics in Engineering Materials, Elsevier Science Publishers B. V., Amsterdam, The Netherlands, 1998. [146] Voyiadjis, G. Z. and Kattan, P. I., Advances in Damage Mechanics: Metals and Metal Matrix Composites, Elsevier Science Publishers B. V., Amsterdam, The Netherlands, 1999. [147] Wang, T. J., “A Continuum Damage Model for Ductile Fracture of Weld Heat Affected Zone,” Engineering Fracture Mechanics, Vol. 40, 1991, pp. 1075-1082. [148] Wachtman, J. B., Mechanical Properties of Ceramics, John Wiley & Sons, Inc., New York, 1996. [149] Weng, T. L. and Sun, C. T., “A Study of Fracture Criteria for Ductile Materials,” Engineering Failure Analysis, Vol. 7, 2000, pp. 101-125. [150] Xing, H.L. and Wang, Z.R., “Finite-element analysis and design of thin sheet superplastic forming,” Journal of Materials Processing Technology, Vol. 68, 1997, pp. 1-7. [151] Xing, H.L. and Wang, Z.R., “Prediction and control of cavity growth during superplastic sheet forming with finite-element modeling,” Journal of Materials Processing Technology, Vol. 75, 1998, pp. 87-93. [152] Yeh, H.Y. and Cheng, J.H., “NDE of Metal Damage: Ultrasonics with a Damage Mechanics Model,” International Journal of Solids and Structures, Vol. 40, No. 26, 2003, pp. 7285-7298. [153] Zhang, K.S., “Fracture Prediction and Necking Analysis,” Engineering Fracture Mechanics, Vol. 52, No. 3, 1995, pp. 575-582. [154] Zhou, D.J., Lian, J., and Suery, M., “Numerical study of superplastic deformation with superimposed pressure for cavity sensitive materials,” Materials Science and Technology, Vol. 4, No. 4, 1988, pp. 345-353. [155] 璩貽安,”連體損傷模式與連體熱力學研究”,國立台灣大學土木工程學研究所碩士論文,1986年。 [156] 樓志文,損傷力學基礎,西安交通大學出版社,中國陜西,1991年。 [157] 楊光松,損傷力學與複合材料損傷,國防工業出版社,中國北京,1993年。 [158] 馬仁宏,”微觀連體損傷力學及其在均質延性材料、複合材料與介面的應用”,國立台灣大學機械工程研究所博士論文,台灣台北,2002年。 [159] 葉宏揚、黃承照、鄭榮和,“能量形式的彈塑性損傷模型及其在粉末鍛造破壞預測的應用”,第27屆中華民國力學學會年會暨全國力學會議論文集,台灣台南,2003年12月,第1221-1232頁。 [160] 黃承照,”粉末鍛造成形破壞判準及燒結預形尺寸設計”,國立台灣大學機械工程研究所博士論文,台灣台北,2002年。 [161] 鍾禮全,”超塑性變形之破壞判準及吹製壓力設計”,國立台灣大學機械工程研究所博士論文,台灣台北,2001年。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38645 | - |
dc.description.abstract | 本研究在能量空間建立彈塑性損傷模型,根據不可逆連體熱力學框架建立材料組成律,採用微觀力學均質法估算機械性質的衰退歷程,採用Gurson塑性勢描述損傷材料的塑性行為。作者提出新的分析方法研究延性材料的破壞機制,由單軸拉伸狀態出發,在能量空間建立物理意義是極限塑性耗散的破壞判準,推廣到多軸應力狀態時,在主軸應力空間建立「損傷功」與「破壞能」以描述各種應力狀態的損傷演化與破壞起始。
本研究結合損傷模型與有限元素法建立成形極限預測法,以同樣的方法論預測板金成形、塊體成形與超塑性成形的成形極限,得到良好的結果,並且成功地將此方法應用於建立成形極限圖、成形程序評估與模具設計等。為了提升超塑性製程效率,作者結合損傷模型與超塑性失穩參數建立「定失穩度吹製法」,控制超塑性變形在特定的失穩程度以縮短成形時間並成功地完成吹製目標。 | zh_TW |
dc.description.abstract | This research develops an elastoplastic damage model on the energy domain. The constitutive equations are derived from the continuum Thermodynamics of irreversible processes and theory of internal variables. The residual mechanical properties are evaluated by the homogenization method of micromechanics. The plastic deformation of damaged materials is described by Gurson’s plastic potential. A new analysis methodology for the fracture mechanism of ductile materials, based on the plastic energy dissipation, is proposed in this thesis. The fracture criterion starts from uniaxial tension and says that crack will initiate when plastic dissipation reaches a critical value. Generalized to a general stresses state, the new concepts of the damaging work and the fracture energy are proposed for the quantitative description of damage evolution and crack initiation.
Combing the proposed damage model and finite element method, we develop a methodology for fracture prediction of metal forming processes, by which the forming limits of sheet forming, bulk forming and superplastic blow forming can be predicted by the universally applicable approach. Furthermore, the methodology is successfully applied to the development of forming limit diagram, the evaluation of forming processes, and mold design. In order to improve the efficiency of superplastic forming processes, we develop a new forming pressure design guideline, constant instability degree control method, based on the manipulation of superplastic instability. The forming time can be reduced significantly by controlling the deformation at a certain degree of instability. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T16:40:22Z (GMT). No. of bitstreams: 1 ntu-94-F87522504-1.pdf: 1368429 bytes, checksum: 9a6024f230fe354b53bde3e301e60f1d (MD5) Previous issue date: 2005 | en |
dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iii 目錄 iv 圖目錄 viii 表目錄 x 符號說明 xi 第一章 緒論 1 1.1 前言 1 1.2 損傷與破壞 1 1.3 研究動機 3 1.4 研究目的與方法 4 1.5 論文結構 5 第二章 理論背景與文獻回顧 10 2.1 不可逆連體熱力學 10 2.1.1 熱力學狀態變量 10 2.1.2 第一定律-能量守恆定律 11 2.1.3 第二定律-Clausius-Duhem不等式 12 2.1.4 自由能、耗散與材料組成律 12 2.1.5 最小自由能定理 14 2.1.6 討論 15 2.2 損傷力學起源與發展 16 2.3 彈塑性損傷模型 17 2.3.1 連體損傷理論 17 2.3.1.1 Lemaitre彈塑性損傷理論 17 2.3.1.2 Rousselier損傷理論 19 2.3.2 介觀損傷模型 21 2.3.2.1 微孔洞成長模型 22 2.3.2.2 Gurson塑性函數 23 2.3.3 討論 24 2.4 應變能破壞判準 25 2.5 結論 29 第三章 損傷模型 31 3.1 損傷模型架構 31 3.1.1 基本假設 31 3.1.2 建構程序 32 3.2 損傷模型 33 3.2.1 材料組成律 33 3.2.1.1 自由能 34 3.2.1.2 殘餘彈性勁度 34 3.2.1.3 耗散勢 35 3.2.1.4 微孔洞演化律 36 3.2.2 損傷機制 37 3.2.2.1 單軸拉伸試驗 39 3.2.2.2 多軸應力狀態 40 3.2.2.3 破壞軌跡 41 3.3 與Lemaitre損傷模型之比較 42 3.3.1 殘餘(等效)彈性常數 42 3.3.2 塑性降伏面 43 3.3.3 損傷演化方程與破壞準則 43 3.4 結論 44 第四章 殘餘勁度預測與損傷評估 47 4.1 殘餘彈性勁度 47 4.1.1 單軸拉伸試驗 48 4.1.2 有限元素模擬 48 4.1.3 結果與討論 49 4.2 非破壞式損傷評估技術 50 4.2.1 損傷評估原理 50 4.2.2 超音波速測量 51 4.2.3 結果與討論 52 4.3 結論 52 第五章 金屬成形極限預測 57 5.1 損傷模型之驗證 57 5.1.1 圓筒深抽試驗 58 5.1.2 有限元素模擬 59 5.1.3 結果與討論 60 5.2 薄板成形破壞預測 61 5.2.1 成形極限圖 61 5.2.2 成形極限預測法 62 5.2.3 薄板成形極限預測 63 5.3 粉末鍛造破壞預測 64 5.3.1 以損傷模型觀點分析鍛造破壞機制 64 5.3.1.1 損傷變量 64 5.3.1.2 破壞起始位置預測與破壞能計算 66 5.3.2 齒輪鍛造破壞預測 67 5.3.3 討論 68 5.4 應力三軸度 69 5.5 結論 71 第六章 善用超塑性失穩抗性 83 6.1 超塑性成形極限預測 84 6.1.1 圓錐定壓吹製實驗 85 6.1.2 以損傷模型觀點分析超塑性吹製成形極限 85 6.1.2.1 損傷變量與破壞能 85 6.1.2.2 有限元素模擬 86 6.1.3 結果與討論 88 6.2 超塑性失穩之相關研究 88 6.2.1 Hart穩定判準 89 6.2.2 Duncombe穩定判準 90 6.2.3 後均勻變形分析 90 6.2.4 討論 91 6.3 吹製壓力設計準則 92 6.3.1 超塑性失穩分析 92 6.3.1.1 失穩參數 92 6.3.1.2 後均勻變形 93 6.3.2 定失穩度吹製法 94 6.3.2.1 方法論 94 6.3.2.2 最短成形時間之壓力路徑 95 6.3.2.3 與其他成形路徑比較 97 6.4 結論 99 第七章 結論與未來研究方向 107 7.1 結論 107 7.2 未來研究方向 109 參考文獻 110 附錄A ABAQUS副程式 123 A-1 損傷模型 123 A-2 定失穩度吹製法 126 附錄B 作者簡歷 131 附錄C 作者著作目錄 132 | |
dc.language.iso | zh-TW | |
dc.title | 損傷模型之建立及工程應用 | zh_TW |
dc.title | Damage Mechanics: model development and applications | en |
dc.type | Thesis | |
dc.date.schoolyear | 93-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 蘇侃,吳文方,單秋成,黃永茂 | |
dc.subject.keyword | 彈塑性損傷模型,損傷功,破壞能,有限元素法,金屬成形極限預測,成形極限圖,定失穩度吹製法, | zh_TW |
dc.subject.keyword | elastoplastic damage model,damaging work,fracture energy,finite element method,forming limit prediction of metal forming processes,forming limit diagram,constant instability degree control method, | en |
dc.relation.page | 132 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2005-07-04 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-94-1.pdf 目前未授權公開取用 | 1.34 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。