請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38631
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃坤祥(Kuen-Shyang Hwang) | |
dc.contributor.author | Hung-Ju Wang | en |
dc.contributor.author | 王鴻儒 | zh_TW |
dc.date.accessioned | 2021-06-13T16:39:52Z | - |
dc.date.available | 2005-07-14 | |
dc.date.copyright | 2005-07-14 | |
dc.date.issued | 2005 | |
dc.date.submitted | 2005-07-04 | |
dc.identifier.citation | [1] R. J. Oscroft and E. A. Belfield, “Flow Behavior of Ceramic Injection Molding Suspensions: Effect of Particle Size Distribution,” Adv. Powder Metall. Part. Mater., Vol. 5, Part 19, compiled by T. M. Cadle and K. S. Narasimhan, Metal Powder Industrial Federation, Princeton, NJ, 1996, pp. 71-78.
[2] Y. Tanaka and K. Nakayabayashi, “Metal Injection Moulding Powder Prodused by High Pressure Water Atomization,” Powder Metall., Vol. 41, No. 1, 1998, pp. 47-50. [3] Y. Kato, K. Nakayabashi, and T. Shimura, “PAMCO Powders Widen MIM Applications,” Metal Powder Report, Vol. 48, No. 10, 1993, pp. 32-36. [4] C. M. Kipphut and R. M. German, “Powder Selection for Shape Retention in Powder Injection Molding,” Intl. J. Powder Metall., Vol. 27, No. 2, 1991, pp. 117-124. [5] T. Hartwig, G. Veltl, H. Kunze, R. Scholl, and B. Kieback, “Powder for Metal Injection Molding,” Journal of the European Ceramic Society, Vol. 18, 1998, pp. 1211-1216. [6] F. Petzoldt, H. Eifert, T. Hartwig, L. Kramer, G. Veltl, and A. Pest, “Broadening the Scope of MIM,” Mater. & Manufacturing Processes, Vol. 12, No. 24, 1997, pp. 691-711. [7] 汪建民, “陶瓷技術手冊(上)”, 經濟部技術處, 1994, pp. 54. [8] A. C. Goncalves, “Metallic Powder Injection Molding Using Low Pressure,” Journal of Material Processing Technology, 2001, pp. 193-198. [9] L. M. Sheppard, “The Changing Demand for Ceramic Additives,” Am. Ceram. Soc. Bull., 1990, pp. 802-805. [10] K.N.Hunt and J.R.G.Evans, “The Influence of Mixing Route on The Properties of Ceramic Injection Moulding Blends,” J. Br. Ceram. Trans., Vol.87, 1988, pp. 17-21. [11] D. Weinand, M. Blömacher, and N. Murayama, “MIM-Feedstock For Rapid Catalytic Debinding:A Novel Technology Becomes A Manufacturing Technique, ” Proc.1993 Powder Metall. World Congress,edited by Y.Bando and K. Kosuge, Japan Soc. Powder Metall., 1993, pp. 292-295. [12] J. G.. Zhang, M. J. Edirisinghe, and J.R. G.Evans, “A Catalogue of Ceramic Injection Moulding Defects and Their Causes, ” Ind.Ceram., Vol. 9, No. 2, 1989, pp. 72-82. [13] K. F. Hens, K. E. Bauer, and R. M. German, “Advanced Quality Comtrol for Powder Injection Moulding Via Die Cavity Instrumentation, ” ANTEC Conference, Society of Plastic Engineers, New Orleans, 1993, pp. 1-12. [14] C. Kirkland, “How to Avoid PIM Defects, ” Injection Molding Metal & Ceramics, No. 12, 1999. [15] H. Miura, T. Baba, S. Andou, and T. Honda, “Optimization of the Molding Conditions for Metal Injection Molding,” Japan Soc. Powder Metall., Vol. 41, No. 3, 1994, pp. 240-243. [16] M. J. Edirisinghe, and J. R. G. Evans, “Properties of Ceramic Injection Moulding Formulations-Parts2 Integrity of Mouldings,” J. Mater. Sci. ,Vol. 22, 1987, pp. 2267-2273. [17] R. Miura, Y. Endo, H. Madarame, and S. Takamori, “On The Occurrence and The Prevention of A Molding Defect In Metal Injection Molding,” Adv. Powder Metall. Part. Mater., Vol. 6, compiled by M. Phillips and J. Porter, Metal Powder Industrial Federation, Princeton, NJ, 1995, pp. 147-160. [18] K. F. Hens, D. Lee, S. T. Lin, and R. M. German, “Integrity of Complex Shape Products by Powder Injection Molding,” Powder Metall. Int., Vol. 23, No. 1, 1991, pp. 15-21. [19] M. S. Thomas, and J. R. G. Evans, “Non-Uniform Shrinkage in Ceramic Injection-Moulding,” Br. Ceram. Trans. J., Vol.87, No. 1, 1988, pp. 22-26. [20] B. Kostic, Y. Zhang, and J. R. G. Evans, “Effect of Molding Conditions on Residual Stresses In Powder Injection Molding,” Intl. J. Powder Metall., Vol. 29, No. 3, 1993, pp. 251-256. [21] K. M. Hut, J. R. G. Evans, and J. Woodthorpe, “Computer Modelling of The Oringin of Defects In Ceramic Injection Moulding-Part IV Residual Stresses,” J. Mater. Sci., Vol. 26 1991, pp. 5229-5238. [22] K. N. Hut, J. R. G. Evans, and J. Woodthorpe, “Computer Modelling of The Oringin of Defects In Ceramic Injection Moulding-Part II Shrinkage Voids,” J. Mater. Sci., Vol. 26 1991, pp. 292-300. [23] R. T. Fox and D. Lee, “Optimization of Metal Injection Molding : Experimental Design,” Intl. J. Powder Metall., Vol. 26, No. 3, 1991, pp. 233-243. [24] B. O. Rhee and C. I. Chung, “Effects of the Binder Characteristics on Binder Separation in Powder Injection Molding,” Powder Injection Molding Symposium, 1992, edited by P. H. Booker, J. Gaspervich, and R. M. German, Metal Powder Industries Federation, Princeton, NJ, pp. 131-153. [25] K. F. Hens and J. A. Grohowski, “Advanced Quality Control for precision PIM,” Adv. Powder Metall. Part. Mater., Vol. 6 compiled by M. Phillips and J. Porter, Metal Powder Industries Federation, Princeton, NJ, pp. 131-153. [26] K. F. Hens, D. Lee, and R. M. German, “Processing Conditions and Toolimg for Powder Injection Molding,” Intl. J. Powder Metall., Vol. 27, No. 2, 1991, pp. 141-153. [27] N. Piccirillo, and D. Lee, “Jetting Phenomenon In Powder Injection Molding,” Intl. J. Powder Metall., Vol. 28, No. 1, 1992, pp. 13-25. [28] W. J. Tseng, “Statistical Analysis of Process Parameters Influenceing Dimensional Control in Ceramic Injection Molding,: J. Mater. Proc. Tech., Vol. 79, 1998, pp. 242-250. [29] K. S. Hwang, “Fundamentals of Debinding Processes In Powder Injection Molding, ” Rev. Part. Mater., Vol. 4, 1996, pp. 71-104. [30] R. M. German, “Theory of Thermal Debinding, ” Intl. J. Powder Metall., Vol. 23, No. 4, 1987, pp. 237-245. [31] K. F. Hens, T. Roche, and J. A. Grohowski, “Thermal Sets Up for Precision PIM, ” Metal Powder Report, Vol. 51, No. 6, 1996, pp. 28-31. [32] K. S. Hwang, H. K. Lin, and S. C. Lee, “Thermal, Solvent, and Vacuum Debinding Mechanisms of PIM Compacts, ” Mater. & Manufacturing Processes, Vol. 12, No. 24, 1997, pp. 593-608. [33] C. W. Finn, “Vacuum Binder Removal and Collection, ” Intl. J. Powder Metall., Vol. 27, No. 2, 1991, pp. 127-132. [34] D. Krueger, M. Bloemacher, and D. Weinand, “Rapid Catalytic Debinding MIM Feedstock: A New Technology Grows Into a Manufacturing Process, ” Adv. Powder Metall. Part. Mater., Vol. 5, 1993, compiled by A. Lawley and A. Swanson, Metal Powder Industrial Federation, Princeton, NJ, pp. 165-180. [35] D. C. Krueger, P. Trubenbach, and J. Ebenhoech, “Powder Injection Molding Catalytic Debinding System- Influence of the Oven Atmosphere on the Process, ” Adv. Powder Metall. Part. Mater., Vol. 6, complied by M. Phillips and J. Porter, Metal Powder Industrial Federation, Princeton, NJ, 1995, pp. 169-178. [36] K. S. Hwang and Y. M. Hsieh, “Comparative Study of Pore Structure Evolution During Solvent and Thermal Debinding of Powder Injection Molded Parts, ” Metall. Trans., Vol. 27A, No. 2, 1996, pp. 245-253. [37] D. F. Lii, J. L. Huang, and B. S. Wu, “Optimisation of Injection Mouding Process for Silicon Nitride Components, ” Powder Metall., Vol. 39, No. 4, 1996, pp. 291-295. [38] R. M. German, Powder Injection Molding, MPIF, Princeton, N. J. 1990, pp. 321-346. [39] J. Woodthorpe, M. J. Edirisinghe, and J. R. G. Evans, “Properties of Ceramic Injection Moulding Formations”, Mater. Sci., 1989, Vol. 24, pp. 1038-1048. [40] 謝永明, “金屬射出成形溶劑脫脂機構之研究,” 1993, 國立台灣大學碩士論文. [41] 林恆光, “金屬射出成形溶劑脫脂製程缺陷之成因檢討,”1996, 國立台灣大學碩士論文. [42] 胡紹中, “粉末射出成形工件之尺寸穩定性研究, ” 2000, 國立台灣大學博士論文. [43] K. S. Hwang and T. H. Tsou, “Thermal Debinding of Powder Injection Parts: Observation and Mechanisms”, Metall. Trans., 1992, Vol. 23A, pp. 2775-2782. [44] R.M.German, “Full Density Sintering of Large Powder, “ Metal Powder Report, Vol. 54, No. 8, 1999, pp. 18-23. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38631 | - |
dc.description.abstract | 金屬粉末經壓製或射出後必須經燒結才有足夠之機械性質,但在未燒結前必須具備一相當之強度,以應付搬運過程中工件彼此間以及與外物碰撞所遭受之應力。因此,本實驗的主要目的即是藉由調整黏結劑配方及製程參數探討其對射出成形元件生胚強度的影響。
在粉末射出成形中一般都使用聚丙烯或聚乙烯來當做骨架黏結劑,本實驗比較不同聚丙烯和聚乙烯胚料的黏度及生胚強度作為評論的標準,由結果顯示,聚乙烯的胚料在各製程中都能有效的控制,且具有好的黏度及生胚強度,聚乙烯的效果遠比聚丙烯來得佳。高溫石蠟並不能如所期待地減少生胚的收縮量。另外,Mg-St和Li-St的添加雖可改善射出品質,但並沒有預期的強化效果,反而使拉伸強度明顯的下降。 在溶劑脫脂的階段,試片的尺寸變化之結果顯示,試片在脫脂時會產生膨脹的現象,此乃因溫度差異造成的熱膨脹及黏結劑在溶劑中的膨潤反應所造成。此外,黏結劑脫脂溫度、黏結劑含量及黏結劑的種類都會影響溶脫時的膨脹量。 | zh_TW |
dc.description.abstract | Metal powder compacts and metal injection molded(MIM) parts are usually fragile before sintering. This low strength caused damages during handling. For this reason, the objective of this study was to examine the effects of binder selection and molding parameters on the green strength of MIM parts.
Polypropylene and polyethylene were generally used as the backbone binder in MIM. Thus, various PP and PE were examined for their advantages and disadvantages. The results show that PE is better than PP. High Temperature Paraffin Wax(HTPW) was examined, but no advantages. Addition of the Mg-St and Li-St can improve quality of molding, but no important in strengthen. During the solvent debinding, swelling was observed when the spec- imens were immersed in the solvent. The major causes were the thermal expansion due to the temperature rise of the specimens and the swelling reaction between the binder and solvent. The amount of expansion was also related to the temperature, amount of the binder, and the type of the binder selected. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T16:39:52Z (GMT). No. of bitstreams: 1 ntu-94-R92527060-1.pdf: 4239703 bytes, checksum: 48b69a3c27fb70fc45ab3be6863fc585 (MD5) Previous issue date: 2005 | en |
dc.description.tableofcontents | 摘要.....................................................ii
Abstract................................................iii 目錄.....................................................iv 圖目錄...................................................xi 表目錄................................................xviii 第一章 簡介...............................................1 第二章 文獻回顧...........................................3 2-1 射料的準備............................................3 2-1-1 粉末性質............................................4 2-1-2 黏結劑性質..........................................5 2-1-3 射料的混煉均勻性....................................8 2-1-4 回收射料的效應......................................8 2-2 射出成形..............................................9 2-2-1 成形時的缺陷成因....................................9 2-2-1-1 短射.............................................10 2-2-1-2 融合線...........................................10 2-2-1-3 破裂與殘留應力...................................10 2-2-1-4 收縮孔...........................................13 2-2-1-5 頂出缺陷.........................................14 2-2-1-6 延遲破壞.........................................15 2-2-1-7 粉體與黏結劑的分離現象...........................15 2-2-1-8 噴流現象.........................................16 2-2-2 製程最佳化與品質控制...............................18 2-3 脫脂.................................................18 2-3-1 溶劑脫脂...........................................20 2-3-2 熱脫脂.............................................22 2-3-3 真空脫脂...........................................22 2-4 燒結.................................................23 2-5 研究目的.............................................24 第三章 實驗..............................................25 3-1 實驗設計.............................................25 3-2 原料.................................................25 3-2-1 基礎粉.............................................25 3-2-2 其他粉末...........................................27 3-2-3 黏結劑.............................................29 3-3 球磨.................................................30 3-4 混合.................................................30 3-5 混煉.................................................31 3-6 射出成形.............................................32 3-7 烘烤.................................................36 3-8 脫脂.................................................37 3-8-1 溶劑脫脂...........................................37 3-8-2 真空脫脂...........................................38 3-9 燒結.................................................38 3-10 性質測試............................................39 3-10-1 黏度測試..........................................39 3-10-2 生胚強度測試......................................41 3-10-3 密度測試..........................................41 3-10-4 拉伸強度測試......................................42 3-10-5 雷射膨脹儀........................................43 3-10-6 測量值穩定性的評估................................45 3-11 實驗儀器............................................45 第四章 結果與討論........................................47 4-1 粉末種類的影響.......................................47 4-1-1 羰基鐵粉和不銹鋼粉的溶脫行為.......................47 4-2 黏結劑的比較.........................................49 4-2-1 骨架結劑系列.......................................49 4-2-1-1 粉末與生胚形狀的選擇.............................50 4-2-1-2 示差分析(DSC)測試................................50 4-2-1-3 熱重分析(TGA)測試................................53 4-2-1-4 溶脫測試.........................................56 4-2-1-5 胚料的黏度測試...................................57 4-2-1-6 流動性測試.......................................60 4-2-1-7 試片的尺寸及密度.................................61 4-2-1-8 燒結試片的硬度...................................62 4-2-1-9 試片的生胚強度...................................62 4-2-1-10 拉伸強度........................................64 4-2-2 填充劑系列.........................................66 4-2-2-1 粉末與生胚形狀的選擇.............................66 4-2-2-2 示差分析(DSC)測試................................66 4-2-2-3 熱重分析(TGA)測試................................67 4-2-2-4 黏結劑的密度比較.................................69 4-2-2-5 胚料的黏度測試...................................69 4-2-2-6 拉伸強度.........................................71 4-2-3 潤滑劑與界面活性劑系列.............................72 4-2-3-1 粉末與生胚形狀的選擇.............................73 4-2-3-2 示差分析(DSC)測試................................74 4-2-3-3 熱重分析(TGA)測試................................75 4-2-3-4 溶脫曲線.........................................77 4-2-3-5 胚料黏度測試.....................................78 4-2-3-6 流動性測試(Spiral Test)..........................80 4-2-3-7 生胚強度測試.....................................82 4-2-3-8 試片的密度.......................................83 4-2-3-9 燒結試片的硬度...................................83 4-2-3-10 拉伸強度........................................84 4-2-4 特殊型黏結劑.......................................87 4-2-4-1 溶脫測試.........................................87 4-2-4-2 示差分析(DSC)測試................................87 4-2-4-3 熱重分析(TGA)測試................................88 4-2-4-4 混煉方式.........................................90 4-2-4-5 黏度測試.........................................90 4-2-4-6 生胚強度測試.....................................91 4-3 混煉的影響...........................................92 4-3-1 混煉方式對生胚強度的影響...........................92 4-3-2 混煉方式對黏度的影響...............................94 4-3-3 混煉方式對射壓的影響...............................95 4-4 射出參數的影響.......................................96 4-4-1 射壓與轉壓點的關係.................................96 4-4-2 黏結劑種類對射壓的影響.............................97 4-4-3 射壓高低對溶脫時尺寸變化的關係.....................98 4-4-4 射壓對尺寸的影響...................................99 4-4-5 射速與生胚強度的關係..............................100 4-4-6 射速與生胚密度的關係..............................101 4-4-7 轉壓點對生胚強度的影響............................102 4-4-8 保壓對生胚強度的影響..............................103 4-4-9 保壓對射壓的影響..................................105 4-5 烘烤的影響..........................................106 4-5-1 烘烤對生胚強度的影響..............................106 4-5-2 烘烤對生胚尺寸的影響..............................107 4-6 溶劑脫脂的影響......................................107 4-6-1 生胚脫脂現象的探討................................108 4-6-2 溶脫時的缺陷......................................116 4-6-3 黏結劑與溶脫時尺寸變化的關係......................119 第五章 結論.............................................122 第六章 建議.............................................124 第七章 未來工作.........................................126 參考文獻................................................127 | |
dc.language.iso | zh-TW | |
dc.title | 材料及製程參數對射出成形元件品質影響之研究 | zh_TW |
dc.type | Thesis | |
dc.date.schoolyear | 93-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 邱文英(Wen-Yen Chiu),韋文誠(Wen-Cheng Wei) | |
dc.subject.keyword | 粉末射出成形,生胚強度,毛細流變,脫脂,膨脹儀, | zh_TW |
dc.subject.keyword | Powder injection molding (PIM),green strength,capillary rheology,debinding,swelling dilatometer, | en |
dc.relation.page | 130 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2005-07-04 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
顯示於系所單位: | 材料科學與工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-94-1.pdf 目前未授權公開取用 | 4.14 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。