Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3859
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor翁昭旼(Jau-Min Wong)
dc.contributor.authorHao Wangen
dc.contributor.author王浩zh_TW
dc.date.accessioned2021-05-13T08:37:39Z-
dc.date.available2018-08-03
dc.date.available2021-05-13T08:37:39Z-
dc.date.copyright2016-08-03
dc.date.issued2016
dc.date.submitted2016-07-26
dc.identifier.citation1. Tai, Y.-M. and H.-W. Chiu, Comorbidity study of ADHD Applying association rule mining (ARM) to National Health Insurance Database of Taiwan. international journal of medical informatics, 2009.
2. Lay, J.-G., K.-H. Yap, and W.-J. Chen, 地理資訊系統應用於登革熱疫情防治之檢討與建議. Environment and Worlds, 2005.
3. 衛生福利部疾病管制署, 衛生福利部疾病管制署傳染病統計資料查詢系統. 2015.
4. Ken Ka-Yin Leea, W.-C.T., Kup-Sze Choi, Alternatives to relational database: Comparison of NoSQL and XML approaches for clinical data storage. ELSEVIER, 2012.
5. mongoDB.
6. ESRI Shapefile Technical. 1998.
7. Chang, C.-L., The research and development of disease mapping in Taiwan. 2006.
8. 健保資料庫. Available from: http://nhird.nhri.org.tw/.
9. 行政院環境保護署環境資源資料開放平台.
10. 行政院環境保護署環境資源資料庫. Available from: http://erdb.epa.gov.tw/.
11. Michael Bostock, V.O., and Jeffrey Heer, D3: Data-Driven Documents. 2011.
12. William A Mattingly, R.R.K., Julia H Chariker, Tim Weimken, Julio Ramirez, An iterative workflow for creating biomedical visualizations using Inkscape and D3.js. BMC Bioinformatics, 2015.
13. Scalable Vector Graphics (SVG) 1.1 (Second Edition). W3C, 2006.
14. 鄉鎮市區界線(TWD97經緯度). Available from: http://data.gov.tw/node/7441.
15. Butler, H., The GeoJSON Format 2015.
16. dataUsman Iqbal, C.-K.H., Phung Anh (Alex) Nguyen,Daniel Livius Clinciu, Richard Lu, Shabbir Syed-Abdul,Hsuan-Chia Yang, Yao-Chin Wanga, Chu-Ya Huanga,Chih-Wei Huang, Yo-Cheng Changa, Min-Huei Hsu,Wen-Shan Jian, Yu-Chuan (Jack) Li, Cancer-disease associations A visualization and animation through medical big data. ELSEVIER, 2015.
17. Jin-Jing Lee , C.-S.J., Sheng-Wei Wang , Chen-Wuing Liu, Evaluation of potential health risk of arsenic-affected groundwater using indicator kriging and dose response model. 2007.
18. Miao-Ching Chi, Y.-L.H., Yu-Chun Wang, The Effect of Ambient Air Quality on Respiratory Diseases in Taiwan. 2010.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3859-
dc.description.abstract資料視覺化是本論文的主軸,它也是使用者與資料溝通最直接的方法,利用D3.js函式庫建立整套疾病地圖系統,透過互動事件與動畫呈現讓使用者感受資料的特性;透過疾病地圖從空間面向觀察臺灣整體的疾病分布與趨勢;透過疾病趨勢圖觀察特定縣市之時間面向資料,展示疾病各年度間的盛行率、通報數以及平均年齡…等不同資訊,同時系統也提供一個便於分析資料的介面清楚地比較不同縣市的差異;利用非同步技術動態載入環境資料庫(自來水水質資料庫、水庫水質資料庫),在整合趨勢圖中隨著時間演進泡泡的位置移動與大小的縮放除了可以瞭解疾病的趨勢也可以觀察特定環境屬性是否與疾病有一定程度上的相關。
本研究系統採用國家衛生研究院全民健康保險研究資料庫百萬人抽樣歸人檔做為疾病資料基礎;為了處理如此大量資料而選用NoSQL資料庫MongoDB做為資料儲存的系統,利用mapreduce技術提升在分散式資料庫查詢的效能並能執行較複雜的運算,剔除不符合條件的就醫紀錄並將原本歸人的資料依據區碼歸檔,建立cache系統避免頻繁的資料庫伺服器存取,將系統資源做最有效的應用。系統開發採用MVC架構,讓系統模組化以增加其擴充性,可依據使用者查詢的疾病代碼(ICD-9)載入適當的預測模組或者功能模組。
zh_TW
dc.description.abstractThe core of this thesis, Data visualization, is a way of user communication with data. Using D3.js tools to build this disease mapping system, which allows user to feel the change of the data by events selection and animation. With the Disease Map function, users are able to observe the distribution of the disease in spatial aspect. With the Disease Trend function, users are able to read the prevalence, count, and average age etc. of any city in time scope. These functions, also provide a interface to compare data between different cities. Loading environment database dynamically, binding with Hybrid Bubble Chart function by observing the position and the radius change of the Bubbles at different time points and let users be able to feel whether is there any relative trend between environment attributes and the disease occurrence.
We used Nation Health Insurance Research Database (NHIR) as the database of this system which contains medical records of a million patients. In order to deal with this enormous amount of patient data, we select MongoDB, which is a distributed document NoSQL database. With mapreduce technique we can run complicated operations. Eliminating those data which doesn’t fit the query condition, then restructure the data by geographical distribution. By using Cache system to keep our database away from busy accessing to increase the query efficiency. We also applied MVC framework to make this system more expendable and able to load specified prediction module or function module depend on the ICD-9 code user input.
en
dc.description.provenanceMade available in DSpace on 2021-05-13T08:37:39Z (GMT). No. of bitstreams: 1
ntu-105-R03548047-1.pdf: 2471130 bytes, checksum: 4cb1acd34388679742eaefa71762836d (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents誌謝 II
中文摘要 III
ABSTRACT IV
目 錄 V
圖目錄 VIII
表目錄 IX
第一章 緒論 1
1-1研究背景與動機 1
1-2研究動機及目的 2
1-3研究流程 3
第二章 研究材料與相關文獻探討 4
2-1健保資料庫 4
2-2水庫水質監測資料庫 6
2-3自來水水質抽驗資料 7
2-4 D3(DATA-DRIVEN DOCUMENTS) 8
2-5地理資訊資料 9
第三章 系統設計 11
3-1系統環境 11
3-2 NOSQL 12
3-3 MONGODB 13
3-4 D3(DATA-DRIVEN DOCUMENTS) 15
3-5 CACHE系統 18
3-6 系統架構 20
第四章 研究方法 21
4-1資料預處理 21
4-1-1水庫水質監測資料庫 21
4-1-2自來水水質抽驗資料 21
4-1-3健保資料庫 22
4-2 分片(SHARDING) 22
4-2-1 分片目的 22
4-2-2 MongoDB分片機制 23
4-3 MAPREDUCE 25
4-4 資料呈現 27
4-4-1疾病地圖 27
4-4-2疾病趨勢圖 28
4-4-3整合趨勢圖 30
第五章 資料呈現 32
5-1 系統簡介 32
5-2 首頁 32
5-3 結果呈現 33
5-3-1 控制面板 33
5-3-2 疾病地圖 34
5-3-2 疾病趨勢圖 36
5-3-3 整合趨勢圖 38
5-4 疾病趨勢模組 40
第六章 結論與展望 41
6-1 結論 41
6-2 展望 43
參考文獻 44
dc.language.isozh-TW
dc.subjectNoSQL資料庫zh_TW
dc.subject健保資料庫zh_TW
dc.subject疾病地圖zh_TW
dc.subjectmongoDBzh_TW
dc.subject巨量資料zh_TW
dc.subject資料視覺化zh_TW
dc.subjectData Visualizationen
dc.subjectNation Health Insurance Research Databaseen
dc.subjectNoSQL Databaseen
dc.subjectDisease Mappingen
dc.subjectBig Dataen
dc.title巨量資料視覺化模型建構之探討大腸癌盛行率與飲用水質關係zh_TW
dc.titleBig Data Visualization System Design and Research of Interaction between Colorectal Cancer and Drinking Wateren
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.coadvisor蔣以仁(I-Jen Chiang)
dc.contributor.oralexamcommittee陳中明(Chung-Ming Chen),張淑惠(Shu-Hui Chang)
dc.subject.keyword健保資料庫,NoSQL資料庫,疾病地圖,mongoDB,巨量資料,資料視覺化,zh_TW
dc.subject.keywordNation Health Insurance Research Database,NoSQL Database,Disease Mapping,Big Data,Data Visualization,en
dc.relation.page45
dc.identifier.doi10.6342/NTU201601304
dc.rights.note同意授權(全球公開)
dc.date.accepted2016-07-26
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
Appears in Collections:醫學工程學研究所

Files in This Item:
File SizeFormat 
ntu-105-1.pdf2.41 MBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved