Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38569
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭明燕(Ming-Yen Cheng)
dc.contributor.authorKuang-Chen Hsiaoen
dc.contributor.author蕭光呈zh_TW
dc.date.accessioned2021-06-13T16:37:42Z-
dc.date.available2005-07-11
dc.date.copyright2005-07-11
dc.date.issued2005
dc.date.submitted2005-07-06
dc.identifier.citationHinkley, D.V. (1970). Inference about a change point in a sequence of random variables. Biometrika 57 41-58.
J.Fan and I.Gijbels. (1996). Local Polynomial Modelling and Its Applications. Chapman&Hall, London.
Loader, C.R. (1994). Change point estimation using nonparametric regression. AT&T Bell Laboratories.
Müller, H.G. (1992). Change-points in nonparametric regression analysis. The Annals of Statistics 20 737-761.
Nason, G.P.and Silverman, B.W. (1994). The discrete wavelet transform in S. J.Comput.Graph.Statist. 3 163-191.
Park, C.W., and Kim, W.C. (2004). Estimation of a regression function with a sharp change point using boundary wavelets. Statistics and Probability Letters. 66 435-448.
Qiu, P. (1991). Estimation of a kind of jump regression functions. System Science and Mathematical Sciences 4 1-13.
Qiu, P. (1994). Estimation of the number of jumps of the jump regression functions. Communications in Statistics-Theory and Methods 23 2141-2155.
Qiu, P., Asano, Chi., and Li, X. (1991). Estimation of jump regression functions. Bulletin of Informatics and Cybernetics 24 197-212.
Qiu, P., and Yandell, B. (1998). A local polynomial jump detection algorithm in nonparametric regression. Technometrics 40(2) 141-152.
Qiu, P. (2003). A jump-preserving curve fitting procedure based on local piecewise-linear kernel estimation. Journal of Nonparametric Statistics 15 437-453.
Raimondo, M. (1998). Minimax estimation of sharp change points. The Annals of Statistics 26 1379-1397.
Simonoff, J.S. (1996). Smoothing Methods in Statistics. Springer-Verlag, New York.
Wang, Y. (1995). Jump and sharp cusp detection by wavelets. Biometrika 82 385-397.
Wu, J.S., and Chu, C.K. (1993). Kernel type estimators of jump points and values of a regression function. The Annals of Statistics 21 1545-1566.
Yin, Y.Q. (1988). Detecting of the number, locations and magnitudes of jumps. Communications in Statistics-Stochastic Models 4 445-455.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38569-
dc.description.abstractLocal polynomial fitting has been known as a powerful
nonparametric regression method when dealing with correlated data and when trying to find implicit connections between variables. This method relaxes
assumptions on the form of the regression function under investigation. Nevertheless, when we try fitting a regression curve with precipitous changes using general local polynomial method, the fitted curve is oversmoothed near points where the true regression function has sharp features. Since local polynomial modelling is fitting a 'polynomial', a continuous and smooth function, to the regression function at each point of estimation, such drawback is intrinsic. Here, we suggest a modified estimator of the conventional local polynomial method. Asymptotic mean squared error is derived. Several numerical results are also presented.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T16:37:42Z (GMT). No. of bitstreams: 1
ntu-94-R92221015-1.pdf: 375716 bytes, checksum: 176635fa8fd9954b4016036e79d650c4 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontentsIntroduction.............................................1
Overview of Several Existing Methods.....................2
Müller (1992). Two one-sided kernel type estimators......3
Qiu and Yandell (1998). Jump detection procedure.........4
Qiu (2003). Jump-preserving estimator....................5
Methodology..............................................6
Derivation of the jump-preserving estimator..............6
Assumptions..............................................6
Notations................................................7
Jump-preserving estimator................................8
Theoretical results......................................9
Numerical Study..........................................12
Discussion...............................................13
References...............................................23
dc.language.isoen
dc.subject迴歸函數zh_TW
dc.subject無母數zh_TW
dc.subject不連續點zh_TW
dc.subject尖點zh_TW
dc.subject導函數不連續zh_TW
dc.subjectdiscontinuityen
dc.subjectregression functionen
dc.subjectnonparametricen
dc.subjectjumpen
dc.subjectcuspen
dc.title導函數不連續型態迴歸函數之非參數估計zh_TW
dc.titleON ESTIMATING REGRESSION FUNCTION WITH CHANGE POINTSen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張淑惠(Shu-Hui Chang),鄭少為(Shao-Wei Cheng)
dc.subject.keyword不連續點,迴歸函數,無母數,尖點,導函數不連續,zh_TW
dc.subject.keywordjump,regression function,nonparametric,cusp,discontinuity,en
dc.relation.page24
dc.rights.note有償授權
dc.date.accepted2005-07-06
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
366.91 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved