請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38551完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳永芳(Yang-Fang Chen) | |
| dc.contributor.author | Yen-Bin Liu | en |
| dc.contributor.author | 劉彥彬 | zh_TW |
| dc.date.accessioned | 2021-06-13T16:37:06Z | - |
| dc.date.available | 2016-07-27 | |
| dc.date.copyright | 2011-07-27 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-07-18 | |
| dc.identifier.citation | CH 1
Reference 1. T. F. Guo, G. L. Pakhomovy, T. C. Wen , X. G. Chin and S. H. Liou, Japanese Journal of Applied Physics 45, L1314–L1316 (2006). 2. J. Y. Kim, S. H. Kim, H. H. Lee, K. Lee, W. Ma, X. Gong, and A. J. Heeger, Adv. Mater. 18, 572–576 (2006). 3. X. Yang, J. Loos, S. C. Veenstra, W. J. H. Verhees, M. M. Wienk, J. M. Kroon, M. A. J. Michels, and R. A. J. Janssen, Nano Lett. 5 579-583 (2005). 4. B. Y. Yu, A. Tsai, S. P. Tsai, K. T. Wong, Y. Yang, C. W. Chu and J. J. Shyue, Nanotechnology 19 255202 (2008). 5. K. Takanezawa, K. Hirota, Q. S. Wei, K. Tajima, and K. Hashimoto, Efficient Charge Collection with ZnO Nanorod Array in Hybrid Photovoltaic Devices, J. Phys. Chem. C 111 7218-7223(2007). 6. Y. Kang, N. G. Park, and D. Kimb, Appl. Phys. Lett. 86 113101 (2005). 7. K. Shankar , G. K. Mor, M. Paulose,O. K. Varghese, C. A. Grimes, Journal of Non-Crystalline Solids 354 2767–2771 (2008). CH 2 Reference 1. M. A. Green , Solar cells: Operating Principles, Technology and Systems Applications, 4–102 (2009). 2. I C. Cheng, Handbook of solar cell technology, 2 (2011). 3. M. P. Thekaekara, The solar constant and the solar spectrum measured from a research aircraft, NASA technical report, NASA TR R-351 (1970). 4. C. C. Hu, Moder Semiconductor Devices for Integrated Circuits, 107–166 (2010). 5. G. A. Chamberlain, Organic solar cell: A review. Solar Cells 8, 47 (1983). 6. D. Wohrle and D. Meissner, Organic solar cells. Adv. Mater. 3, 129 (1991). 7. S. Y. Chen, A study on the fabrication of organic/inorganic solar cells, 5–16 (2009). 8. H. Hooppe et al, Organic solar cells: An overview. J. Mater. Res. 19 7 (2004). 9. 林明獻, 太陽能電池技術入門, 2-1–2-23 (2008). 10. G. Lu, Organic Semiconductor, ECE 423 (2006). 11. F. P. R. S. Ritberger, and N. S. Sacriftic, Adv. Funct. Mater, 13 85–88 (2003). 12. M. Campoy-Quiles, T. ferencz, T. Agostinelli, P. G. Etchegoin, Y. Kim,T. D. Anthopoulos, P. N Stavrinou, D. D. C. Bradley and J. Nelson, nature materials 7 (2008). 13. K. M. Coakley and M. D. McGehee, Chem. Mater. 16 4533-4542 (2004). 14. G. Yu, J. Gao, J. C. Hummelen, F. Wudi, A. J. Heeger, SCIENCE , 270 1789 (1995). 15. M. Reyes-Reyes, K. Kim, J. Dewald, R. L. pez-Sandoval, A. Avadhanula, S. Curran, and D. L. Carroll, Org. Lett. 7 26 (2005). 16. T. L. Benanti, D. Venkataraman, Photosynthesis Research, 87 (2006). 17. N. S. Sariciftci, L. smilowitz, A. J. Heeger, and F. Wudl, Photoinduced electron transfer from a conducting polymer to buck-minsterfullerene. Science 258 1474 (1992). CH3 Reference 1. V. K. Zworykin, J. Hiller, and R. L. Snyder, ASTM Bull. 117, 15 (1942). 2. G. I. Goldstein, D. E. Newbury, P. Echlin, D. C. Joy, C. Fiori, and E. Lifshin, Scanning electron microscopy and X-ray microanalysis, Plenum Press, New York and London (1981). 3. http://serc.carleton.edu/research_education/geochemsheets/techniques/XRD.html 4. http://nanost.ntu.edu.tw/n_get_equ.asp?id=8 5. P. M. Bridger, Z. Z. Bandic, E. C. Piquette, and T. C. McGill, J. Vav. Sci. Technol. B 17, 1750 (1999). 6.R. Chierchia, T. BWttcher, H. Heinke, S. Einfeldt, S. Figge, and D. Hommel, J. Appl. Phys. 93, 8918 (2003). 7.S. W. Lee, H. C. Chen, and L. J. Chen, J. Appl. Phys. 92, 6880 (2002). 8. F. Zenhauserrxa M. Adrian, B. ten Heggeler-Bordier, F. Ardizzoni, and P. Descouts,J.Appl. Phys. 73, 7232 (1993). 9. http://www.ntmdt.com/spm-principles/view/non-contact-techniques 10. http://garnogroup.lsu.edu/Research3.html 11. NT-MDT (The AFM manufacturer) operation manual 12. http://teaching.shu.ac.uk/hwb/chemistry/tutorials/molspec/uvvisab1.htm 13. http://www.standardbase.hu/tech/FinalHUTechUV-Vis.pdf CH 4 Reference 1. G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, Science. 270 1789–1791 (1995). 2. C. J. Brabec, Sol. Energy Mater. Sol.Cells 83 273–292 (2004). 3. V. Shrotriya, G. Li, Y. Yao, C. W. Chu, and Y. Yang, Appl. Phys. Lett. 88 073508-1–037350-3 (2006). 4. K. M. Coakley and M. D. McGeheea, Appl. Phys. Lett. 83 3380–3382 (2003). 5. S. J. Kim, W. J. Kim, A. N. Cartwright, P. N. Prasad , Sol. Energy Mater. Sol. Cells 93 657–661 (2009). 6. K. Takanezawa, K. Hirota, Q. S. Wei, K. Tajima, and K. Hashimoto, J. Phys. Chem. C 111 7218-7223 (2007). 7. C. T. Chen , F. C. Hsu, S. W. Kuan , Y. F. Chen, Sol. Energy Mater. Sol. Cells 95 740–744 (2011). 8. Z. Ding, G. Q. Lu, and P. F. Greenfield, J. Phys. Chem. B, 104 4815-4820 (2000). 9. B. Y. Yu, A. Tsai, S. P. Tsai, K. T. Wong, Y. Yang, C. W. Chu and J. J. Shyue, Nanotechnology 19 255202 (2008). 10. F. Sauvage, F. D. Fonzo, A. L. Bassi, C. S. Casari, V. Russo, G. Divitini, C. Ducati,C. E. Bottani, P. Comte, and M. Graetzel, Nano Lett. 10 2562–2567 (2010). 11. D. Gong, C. A. Grimes, and O. K. Varghese, J. Mater. Res. 16 3331–3334 (2001). 12. X. Feng, K. Shankar, O. K. Varghese, M. Paulose, T. J. Latempa, and C. A. Grimes, Nano Lett. 8 3781–3786 (2008). 13. C. Y. Kuo, W. C. Tang, C. Gau, T. F. Guo, and D. Z. Jeng, Appl. Phys. Lett. 93 033307-1–033307-3 (2008). 14. T. S. Kang, A. P. Smith, B. E. Taylor, and M. F. Durstock, Nano Lett. 9 601–606 (2009). 15. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, J. Vac. Sci. Technol. B 14 4129–4133 (1996). 16. W. H. Baek, I. Seo, T. S. Yoo , H. HoLee, C. M. Yun, Y. S. Kim, Sol. Energy Mater. Sol. Cells 93 1587–1591 (2009). 17. J. D. Ryckman, M. Liscidini, J. E. Sipe, and S. M. Weiss, Nano Lett. 11 1857–1862 (2011). 18. L. Y. Hong, D. H. Lee, D. P. Kim, Journal of Physics and Chemistry of Solids 69 1436–1438 (2008). 19. S. S. Williams, M. J. Hampton, V. Gowrishankar, I K. Ding, J. L. Templeton, E. T. Samulski, J. M. DeSimone, and M. D. McGehee, Chem. Mater. 20 5229–5234 (2008). 20. B. Radha and G. U. Kulkarni, ACS Applied Materials & Interfaces 1 257–260 (2009). 21. K. M. Coakley and M. D. McGehee, Chem. Mater. 16 4533–4542 (2004). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38551 | - |
| dc.description.abstract | 石油油價高漲的今日,各種替代能源在各國積極研發,而太陽能電池更是受到矚目,許多有趣研究結果紛紛出爐。最常見的太陽能電池有以矽基為材料的單晶矽、多晶矽、非晶矽,以及 III-V的砷化鎵、II-VI鍗化鎘。這些太陽能電池雖然效率較高,但製造成本較高,是商業化很大的挑戰。而有機太陽能電池以低溫製程方法製備,厚度薄,材料成本便宜,深具發展潛力。
在實驗中我們以奈米壓印方法來製作半導體奈米結構。不同於傳統奈米壓印技術,我們以光碟片代替矽模板。首先將光碟片以酒精洗乾淨,在把PDMS鋪在光碟片上面,放置在真空下乾燥。之後分離光碟及PDMS ,我們可以得到單層的柵狀奈米結構。為了獲得二維奈米結構,我可以再把柵狀PDMS結構垂直放在光碟片光柵上,以夾子夾住放進烤箱以90度烘烤,最後我們可以獲得格子狀PDMS結構。 我們把二氧化鈦溶液滴在ITO玻璃上,接著把PDMS蓋上去,烘烤乾後就把形狀轉印上去,再把得到的二氧化鈦奈米結構放進高溫爐中退火結晶。最後我們可以得到二氧化鈦柵狀及奈米柱結構。 我們製造的有機太陽能電池是P3HT/PCBM系統,把P3HT/PCBM旋轉塗佈在我們利用奈米壓印方法得到的二氧化鈦結構,接著把樣品放置於氮氣環境下烘烤,最後蒸鍍上銀就完成有機無機混和異質接面太陽能電池。我們把樣品放在模擬太陽光AM1.5下照射量測效率,比較平面和有奈米結構的太陽能效率。根據實驗結果,有奈米結構的光電流比較大,分析原因為增加二氧化鈦表面積,可以使受激電子更容易傳導到電極,進而增加太陽能效率。 | zh_TW |
| dc.description.abstract | Hybrid photovoltaic devices based on nanostructured anatase TiO2 and poly(3-hexylthiophene) (P3HT) blended with (6,6)-phenyl C61 butyric acid methyl ester (PCBM) have been fabricated and investigated. Nanoimprinting lithography technique assisted by digital versatile disc and poly dimethylsiloxane has been used to fabricate the highly ordered TiO2 grating and nanodisk patterns, which can provide a larger interfacial area than that of their flat TiO2 film countpart. The power conversion efficiencies of hybrid photovoltaic devices with patterned TiO2 structures can be enhanced by up to about 30 %. The higher power conversion efficiency possessed by grating and nanodisk devices can be attributed to a larger interfacial area, which is beneficial for charge collection and transport. Besides, the patterned TiO2 structures can generate light trapping effect and enhance the absorption of light for the P3HT:PCBM active layer. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T16:37:06Z (GMT). No. of bitstreams: 1 ntu-100-R98222025-1.pdf: 7673997 bytes, checksum: a8d58237101a369325a97c3682829d44 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 口試委員會審定書 ...................................................................................................... i
誌謝 .............................................................................................................................. ii 中文摘要 ...................................................................................................................... iii 英文摘要 ...................................................................................................................... iv Chapter 1 Introduction 1 Reference.......................................................................................................................... 3 Chapter 2 Theoretical Background 4 2.1 The Principle of Solar Cell ........................................................................................ 4 2.1.1 Solar Spectrum ................................................................................................... 4 2.1.2 Photovoltaic Effect ............................................................................................. 6 2.1.3 Short Circuit Current........................................................................................... 7 2.1.4 Open Circuit Voltage ........................................................................................ 10 2.1.5 Filling Factor and Efficiency ............................................................................ 10 2.1.6 Device Analysis ................................................................................................ 11 2.2 Organic Semiconductor ........................................................................................... 13 2.2.1 Description of Investigated Materials ................................................................. 14 2.3 Device Structures ..................................................................................................... 16 2.3.1 Bilayer Heterojunction ..................................................................................... 16 2.3.2 Bulk Heterojunction ......................................................................................... 17 Reference ....................................................................................................................... 19 Chapter 3 Measurement Equipments 21 3.1 Scanning Electron Microscopy ........................................ ....................................... 21 3.2 X-ray Diffraction ..................................................................................................... 23 3.3 Atomic Force microscopy ........................................................................................ 25 3.4 Thermal Evaporation ............................................................................................... 30 3.5 Measured System ..................................................................................................... 31 3.6 Ultraviolet–Visible Spectroscopy ............................................................................ 32 Reference ....................................................................................................................... 34 Chapter 4 Organic solar cells based on imprinting highly ordered TiO2 nanostructures 35 4.1 Introduction ............................................................................................................. 35 4.2 Experimental section ............................................................................................... 37 4.3 Result and discussion ............................................................................................... 41 4.4 Summary .................................................................................................................. 49 Reference ....................................................................................................................... 50 Chapter 5 Conclusion 53 | |
| dc.language.iso | en | |
| dc.subject | 二氧化鈦 | zh_TW |
| dc.subject | 光碟片 | zh_TW |
| dc.subject | 奈米結構 | zh_TW |
| dc.subject | 奈米壓印 | zh_TW |
| dc.subject | 有機太陽能電池 | zh_TW |
| dc.subject | TiO2 | en |
| dc.subject | digital versatile disc | en |
| dc.subject | nanostructures | en |
| dc.subject | nanoimprinting | en |
| dc.subject | organic solar cell | en |
| dc.title | 二氧化鈦陣列結構應用於太陽能電池 | zh_TW |
| dc.title | Organic Solar Cells Based on Imprinting Highly Ordered TiO2 Nanostructures | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林唯芳(Wei-Fang Su),許芳琪(Fang-Chi Hsu) | |
| dc.subject.keyword | 二氧化鈦,有機太陽能電池,奈米壓印,奈米結構,光碟片, | zh_TW |
| dc.subject.keyword | TiO2,organic solar cell,nanoimprinting,nanostructures,digital versatile disc, | en |
| dc.relation.page | 53 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-07-18 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 7.49 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
