Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38546
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林敏聰
dc.contributor.authorPo-Chung Huangen
dc.contributor.author黃伯群zh_TW
dc.date.accessioned2021-06-13T16:36:55Z-
dc.date.issued2005
dc.date.submitted2005-07-06
dc.identifier.citation[1] Hans-Joachim Freund, Clusters and island on oxides: from catalysis via electronics and magnetism to optics, Surf. Sci. 500, 271-299 (2002)
[2] D. L. Mills, J. Magn. Magn. Mater. 100, 515 (1991)
[3] M. E. Fisher, Rev. Mod. Phys. 46, 579 (1974)
[4] L. Onsager, Phys. Rev. 65, 117 (1944)
[5] F. J. Himpsel, J. E. Ortega, G. J. Mankey and R. F. Willis, Adv. in Phys. 47, 511 (1998)
[6] S. T. Bramwell and P. C. W. Holdsworth, J. Phys. Condens. Matter 5, L53 (1993)
[7] D. P. Woodruff & T. A. Delchar, Modern Techniques of Surface Science, 2nd edition, Cambridge University Press (1994)
[8] R.-P. Blum, D. Ahlbehrendt, and H. Niehus, “Preparation-Dependant Surface Composition and Structure of NiAl(001):SPA-LEED and NICISS Study”, Surf. Sci. 366, 107 (1996)
[9] D. R. Mullins and S. H. Overbury. “The Structure and Composition of the NiAl(110) and NiAl(100) Surface”, Surf. Sci. 199, 141 (1988)
[10] Nicolas Frémy, Vincent Maurice, and Philippe Marcus, J. Am. Ceram. Soc. 86, 669-75 (2003)
[11] R.-P. Blum, H. Niehus, “Initial growth of Al2O3 on NiAl(001)”, Appl. Phys. A, 66, S529 533 (1998)
[12] R.-P. Blum, Dirk Ahlbehrendt and Horst Niehus, “Growth of Al2O3 stripes in NiAl(001)”, Surf. Sci. 396, 176-188 (1998)
[13] Hans Lüth, “Surfaces and Interfaces of Soliks”
[14] M. P. Seah and W. A. Dench, Surf. Interface Anal. 1, 3-4 (1979)
[15] V. Tognetti and F. Borsa, “Magnetic Properties of Matter”, Would Scientific, pp.336~366 (1988)
[16] M. Mansuripur, J. Appl. Phys. 67, 6466 (1990)
[17] Z. Q.Qiu, S. D. Bader, J. Magn. Magn. Mater. 200, 664 (1999)
[18] Z. Q. Qiu, S. D. Bader, Review of scientific instrument 71, 1243, (2000)
[19] C.-C. Kuo, Doctor’s thesis, National Taiwan University, 2000.
[20] B. Schulz and K. Baberschke, Phys. Rev. B 50, 13467 (1994)
[21] R. Jungblut, M. T. Johnson, F. A. de Stegge, A. Reinders and F. J. A. D. Broeder, J. Appl. Phys. 75, 6424 (1994)
[22] G. Bochi, C. A. Ballentine, H. E. Inglefield, C. V. Thompson and R. C. O’Handley, Phys. Rev. B 52, 7311 (1995)
[23] W. L. O’Brien, T. Droubay and B. P. Tonner, Phys. Rev. B 54, 9297 (1996)
[24] http://nobelprize.org/physics/laureates/1986/index.html
[25] Bo-Yao Wang, Master’s thesis, National Taiwan University (2004)
[26] Yi-Jen Ye, Master’s thesis, National Tsing Hua University (2003)
[27] Wen-Chin Lin, C.-C. Kuo, M.F. Luo, Ker-Jar Song, Minn-Tsong Lin, Appl. Phys. Lett. 86, 043105 (2005)
[28] R. Franchy, G. Schmitz P. Gassmann, F. Bartolucci, Appl. Phys. A 65, 551-566 (1997)
[29] E. Bauer, H. Popper, Thin Solid Films 12, 167 (1972)
[30] C. S. Barrett, T. B. Massalski, “Structure of Metals Third Edition ”, McGraw-Hill, Inc. (1996)
[31] Niklas Nilius, Maria Kulawik, Hans-Peter Rust, and Hans-Joachim Freund, Phys. Rev. B 69, 121401 (2004)
[32] Charles T. Campbell, Surf. Sci. Rep. 27, 1-111(1997)
[33] D.E. Jesson, G. Chen, K. M. Chen, and S. J. Pennycook, Phys Rev. Lett. 80, 5156 (1998)
[34] Y. Ebiko, S. Muto, D. Suzuki, S. Itoh, K. Shiramine, and T. Haga, Phys. Rev. Lett. 80, 2650 (1998)
[35] Shangjr Gwo, Chung-Pin Chou, Chung-Lin Wu, Yi-Jen Ye, Shu-Ju Tsai, Wen-Chin Lin, and Minn-Tsong Lin, Phys Rev. Lett. 90, 185506-1 (2003)
[36] Chii-Bin Wu, Master’s thesis, National Taiwan University (2004)
[37] Javier Méndez, Horst Niehus, Appl. Surf. Sci. 142, 152-158 (1999)
[38] Zheng Gai and Jian Shen et al. Phys. Rev. Lett. 89, 235502 (2002)
[39] V. Podgursky, I. Costina, R. Franchy, Surf. Sci. 529, 419 - 427(2003)
[40] M. Bäumer, M. Frank M. Heemeier R. Kühnemuth, S. Stempel and H.-J. Freund, Surf. Sci. 454-456 957-962 (2000)
[41] M. Heemeier, S. Stempel, Sh. K. Shaikhutdinov J. Libuda, M. Bäumer, R. J. Oldman, S. D. Jackson and H.-J. Freund et al. Surf. Sci. 523, 103-110 (2003)
[42] J. Nogués, Ivan K. Schuller, J. Magn.Mage.Mater. 192, 203-232 (1999)
[43] Y. Maeda, T. Fujitani, S. Tsubota M. Haruta, Surf. Sci. 562, 1-6 (2004) 、
[44] N. Nakajima, H. Kato, T. Okazaki, Y. Sakisaka, Sur. Sci. 561, 79-86 (2004)
[45] J. P. Pierce, M. A. Torija, Z. Gai, Junren Shi T. C. Schulthess, G. A. Farnan, J. F. Wendelken, E. W. Plummer and J. Shen, Phys. Rev. Lett. 92, 237201-1(2004)
[46] Javier Mndez, Horst, Niehus, Appl. Surf. Sci. 142, 152-158 (1999)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38546-
dc.description.abstract我們將金屬原子蒸鍍在氧化鋁/鎳鋁合金(100)基板上,成功製作出具有以下優點的金屬奈米顆粒:有序的排列、均勻的體積分佈以及高熱穩定度。而這些優點歸因於氧化鋁層表面產生獨特的週期性一維長條結構,其間距約4 nm。我們分別在低溫、室溫及高溫下成長金屬奈米顆粒藉以比較其有序性的不同。此外,我們改變不同的原子覆蓋量來研究其熱穩定度與磁性行為。這個新穎的奈米結構材料或許能為各式各樣的應用打開大門,例如:更有效的催化劑、更高的資料儲存密度…等,而製作出大面積有序排列的奈米顆粒是這些應用的重要條件之一。zh_TW
dc.description.abstractWe present metal nanoparticle grown by vapor deposition over a single-crystalline Al2O3 layers on NiAl(100) with excellences including: well-ordered alignment, uniform size distribution, and high thermal stability. We attribute the excellences to peculiar one-dimensional long stripes with ~ 4 nm interdistance on the surface of the ultrathin Al2O3 template. For the comparism, low temperature, room temperature and high temperature growth of nanoparticles are performed. Besides, the thermal stability and the magnetic properties with respect to different deposition amount are also characterized. This novel nanostructure may open the door to numerous applications, such as catalysis and nanostorage, where large area well-ordered nanoparticles are desired.en
dc.description.provenanceMade available in DSpace on 2021-06-13T16:36:55Z (GMT). No. of bitstreams: 1
ntu-94-R92222028-1.pdf: 4144955 bytes, checksum: ab926f3e0a8c829f86146cf9b0827405 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents致謝 1
摘要 2
Abstract 3
1 簡介 6
2 基礎概念 10
2.1 古典成核理論 (The Classical Theory of Nucleation)10
2.2 量子尺度效應 (Quantum Size Effect)……………….16
2.3 磁滯曲線 (Magnetic Hysteresis Loop)………………17
2.4 居禮溫度 (Currie Temperature)………………………18
3 實驗方法和原理 21
3.1 多功能超高真空系統...........…………………………..23
3.2 加熱系統與氧化........................................................27
3.2.1 加熱系統與溫度量..............................................27
3.2.2 氧化....................................................................28
3.3 分子束磊晶 (MBE)………………………………….....29
3.4 薄膜生長分:析中能量電子繞射 (MEED)..................29
3.5 表面分析原理和儀器......………………………….......32
3.5.1 晶格平面結構:低能量電子繞射投影(LEED).......32
3.5.2 晶格垂直結構:強度/能量曲線圖 (I/V-LEED)…35
3.5.3 表面元素分析:歐傑電子能譜儀 (AES)…………37
3.5.4 掃描式穿隧電流顯微儀 (Scanning Tunneling
Microscope)………………………………………40
3.6 磁性量測:磁光柯爾效應 (MOKE)……………………47
4 實驗結果分析與討論 51
4.1 原子覆蓋量校正........................................................51
4.2 表面分析...................................................................55
4.2.1 氧化鋁層的低能量電子繞射圖像(LEED).............55
4.2.2 鈷奈米顆粒隨覆蓋量的變化................................58
4.2.3 鈷奈米顆粒的成長溫度效應................................63
4.2.4 鈷奈米顆粒的升溫效應.......................................67
4.3 磁性分析...................................................................74
4.3.1 鈷奈米顆粒的磁滯曲線與覆蓋銅效應.................74
4.3.2 錳奈米顆粒的磁滯曲線.......................................79
5 討論 81
5.1 θ相-氧化鋁的結構…………………………………….81
5.2 鈷奈米顆粒特殊的直徑分佈…………………………..83
5.3 氧化鋁缺陷的隆起與奈米顆粒的有序性……………..83
6 結論 86
參考資料 88
dc.language.isozh-TW
dc.subject磁性zh_TW
dc.subject成長zh_TW
dc.subject奈米磁學zh_TW
dc.subject奈米團簇zh_TW
dc.subject奈米顆粒zh_TW
dc.subject金屬zh_TW
dc.subject錳zh_TW
dc.subject鈷zh_TW
dc.subject鎳鋁zh_TW
dc.subject熱穩定度zh_TW
dc.subject氧化鋁zh_TW
dc.subject有序zh_TW
dc.subjectnano magnetismen
dc.subjectCoen
dc.subjectMnen
dc.subjectmetalen
dc.subjectnano particleen
dc.subjectnano clusteren
dc.subjectorderingen
dc.subjectalignen
dc.subjectaluminumen
dc.subjectNiAlen
dc.subjectgrowthen
dc.subjectthermal stabilityen
dc.title自發有序排列之金屬奈米顆粒的成長、熱穩定度與磁性研究zh_TW
dc.titleGrowth, Thermal Stability and Magnetism of Self-Aligned Metal Nanoparticlesen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee沈青嵩,果尚志,宋克嘉,張嘉升,林寬鋸
dc.subject.keyword鈷,錳,金屬,奈米顆粒,奈米團簇,奈米磁學,磁性,有序,氧化鋁,鎳鋁,成長,熱穩定度,zh_TW
dc.subject.keywordCo,Mn,metal,nano particle,nano cluster,nano magnetism,ordering,align,aluminum,NiAl,growth,thermal stability,en
dc.relation.page92
dc.rights.note有償授權
dc.date.accepted2005-07-06
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
4.05 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved