請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38538完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王如意(Ru-yih Wang) | |
| dc.contributor.author | Yu-ta Tsou | en |
| dc.contributor.author | 鄒侑達 | zh_TW |
| dc.date.accessioned | 2021-06-13T16:36:39Z | - |
| dc.date.available | 2005-07-19 | |
| dc.date.copyright | 2005-07-19 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-06 | |
| dc.identifier.citation | 參考文獻
1. 王如意、易任:應用水文學,上、下冊,國立編譯館出版,茂昌圖書有限公司發行,1979。 2. 永井明博、田中丸治哉、角屋 睦:ダム管理の水文學,森北出版会, 2003。 3. 王如意、譚智宏:「修正型水筒模式之研究及其應用於流域逕流量之預測」,台灣水利,第39卷,第3期,1980。 4. 王如意、劉佳明、虞國興:「水筒模式及最佳農業用水之研究」,國立台灣大學農業工程學研究所研究報告,1980。 5. 王如意、李戎威:「空間分布地表逕流多層核胞模式之研究及其應用」,行政院農業委員會研究報告,1989。 6. 菅原正已,流出解析法,日本共立出版社,1972。 7. 菅原正已,「水文水櫃模式分析技術研習會議講義」,台灣大學土木工程學研究所,1978。 8. 鄭士仁:「降雨效應與土地利用改變對逕流歷線特性之影響」,國立台灣大學生物環境系統工程學研究所博士論文,2001。 9. 鄭思蘋:「都會區颱洪災害損失之分析與評估」,國立台灣大學生物環境系統工程學研究所博士論文,2003。 10. 王如意等:「台北防洪整體檢討計畫(一)」,經濟部水資源局研究計畫報告,1996。 11. 王如意等:「台北防洪整體檢討計畫(二)」,經濟部水資源局研究計畫報告,1997。 12. 王如意等:「台北防洪整體檢討計畫(三)」,經濟部水資源局研究計畫報告,1998。 13. 台北縣政府:「台北縣統計要覽」,1963~2003。 14. 基隆市政府:「基隆市統計要覽」,1963~2003。 15. 李天浩、鍾德霖、許銘熙、顏清連、李戎威: 「淡水河整體預報系統模式之現況與未來發展」,第十三屆水利工程研討會,2002。 16. 童慶斌:啟發式演算法與水資源管理講義,國立台灣大學生物環境系統工程學系,永續發展研究室,2003。 17. Chow, V.T. and Kulandaiswamy, V. C., “General Hydrologic System Model”, Journal of Hydraulics, ASCE, June, 1971. 18. Nash, J. E., “The Form of the Instantaneous Unit Hydrograph”, Intl. Assoc. Sci. Hydrology, Pub.45. Vol.3, pp. 114-121, 1957. 19. Andersen, C. T., I. D. L. Foster and C. J. Pratt, “The Role of Urban Surfaces (Permeable Pavements) in Regulating Drainage and Evaporation: Development of A Laboratory Simulation Experiment,” Hydrological Processes, 13, 597-609, 1999. 20. Ando, Y., K. Musiake and Y. Takahasi, “Modelling of Hydrologic Processes in A Small Urbanized Hillslope Basin with Comments on The Effects of Urbanization,” Journal of Hydrology, 68, 61-83, 1984. 21. Arnell, V., “Estimating Runoff Volumes from Urban Areas,” Water Resources Bulletin, 18(3), 383-387, 1982. 22. Arnold, C. L. J. and C. J. Gibbons, “Impervious Surface Coverage-The Emergence of A Key Environmental Indicator,” Journal of The American Planning Association, 62, 243-256, 1996. 23. Bonta, J. V., C. R. Amerman, T. J. Harlukowicz and W. A. Dick, “Impact of Coal Surface Mining on Three Ohio Watersheds-Surface-Water Hydrology,” Journal of The American Water Resources Association, 33(4), 907-917, 1997. 24. Brown, R. G., “Effects of Precipitation and Land Use on Storm Runoff,” Water Resources Bulletin, 24(2), 421-426, 1988. 25. Bérod, D. D., V. P. Singh, D. Devred and A. Musy, “A Geomorphologic Non-Linear Cascade (GNC) Model for Estimation of Floods from Small Alpine Watersheds,” Journal of Hydrology, 166, 147-170, 1995. 26. Changnon, D., D. Fox and S. Bork, “Differences in Warm-Season, Rainstorm-Generated Stormflows for Northeastern Illinois Urbanized Basins,” Water Resources Bulletin, 32(6), 1307-1317, 1996. 27. Ferguson, B. K. and P. W. Suckling, “Changing Rainfall-Runoff Relationships in The Urbanizing Peachtree Creek Watershed, Atlanta, Georgia,” Water Resources Bulletin, 26(2), 313-322, 1990. 28. Hollis, G. E. and J. C. Ovenden, “The Quantity of Stormwater Runoff from Ten Stretches of Road, A Car Park and Eight Roofs in Hertfordshire, England During 1983,” Hydrological Processes, 2, 227-243. 29. Hvitved-Jacobsen, T. and Y. A. Yousef, “Analysis of Rainfall Series in Urban Drainage Control System,” Water Research, 22, 491-496, 1988. 30. Junil, P., I. S. Kang and V. P. Singh, “Comparison of Simple Runoff Models Used in Korea for Small Watersheds,” Hydrological Processes, 13, 1527-1540, 1999. 31. Kibler, D. F., D. C. Froelich and G. Aron, “Analyzing Urbanization Impacts on Pennsylvania Flood Peaks,” Water Resources Bulletin, 17, 270-274, 1981. 32. Krug, W. R., “Simulation of Temporal Changes in Rainfall-Runoff Characteristics, Coon Creek Basin, Wisconsin,” Water Resources Bulletin, 32(4), 745-752, 1996. 33. Lazaro, T. R., “Nonparametric Statistical Analysis of Annual Peak Flow Data from A Recently Urbanized Watershed,” Water Resources Bulletin, 12, 101-107, 1976. 34. Marsalek J. and D. Sztruhar, “Urban Drainage: Review of Contemporary Approaches,” Water Science and Technology, 29, 1-10, 1994. 35. Matheussen, B., R. L. Kirschbaum, I. A. Goodman and G. M. O’Donnell, “Effects of Land Cover Changes on Streamflow in The Interior Columbia River Basin (USA and Canada),” Hydrological Processes, 14, 867-885, 2000. 36. Moscrip, A. L. and D. R. Montgomery, “Urbanization, Flood Frequency, and Salmon Abundancee in Puget Lowland Streams,” Journal of The American Water Resources Association, 33(6), 1289-1297, 1997. 37. Simmons, D. L. and R. J. Reynolds, “Effects of Urbanization on Base Flow of Selected South-Shore Streams,” Long Island, New York. Water Resources Bulletin, 18, 797-805, 1982. 38. Stankowski, S. J., “Population Density as An Indirect Indicator of Urban and Suburban Land-Surface Modifications,” U. S. Geological Survey Professional Paper, No. 800-B, B219-B224, 1972. 39. Tsihrintzis, V. A. and R. Hamid, “Urban Stormwater Quantity/Quality Modeling Using The SCS Method and Empirical Equations,” Journal of The American Water Resources Association, 33(1), 163-176, 1997 40. Wong, T. S. W. and Y. Li, “Theoretical Assessment of Changes in Design Flood Peak of An Overland Plane for Two Opposing Urbanization Sequences,” Hydrological Processes, 13, 1629-1647, 1999. 41. Saaty, T. L., “A Scaling Method for Priorities in Hierarchical Structures,” Journal of Mathematical Psychology, 15(3), 234-281, 1977. 42. Saaty, T. L., The Analytic Hierarchy Process, McGraw-Hill, NewYork, 1980. 43. Saaty, T. L., “Fundamentals of Decision Making and Priority Theory with the Analytic Hierarchy Process,” RWS Publications, Pittsburgh, PA, pp. 1-527, 1994. 44. Glover, F. and M. Laguna. Tabu Search. Kluwer Academic Publishers, Boston, MA, USA, 1997. 45. Goldberg, D. E. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wisely Publishing Company, Inc, Reading, MA, USA, 1989. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38538 | - |
| dc.description.abstract | 台灣年平均降雨量高達2500公厘,且於時間與空間之分布上皆極不均勻。晚近三十年間,台灣地區隨著都市化之演變、人口集中與土地利用改變等因素影響下,許多暴雨所造成之災害更甚以往。
在過去研究中,水文模式之主要考慮因子為地文因子或水文因子,尚無詳細探討人文因子所造成模式之影響。由都市化現象造成環境變遷可歸納出地文因子與人文因子之變化。因此,本研究採用分析階層程序法將人文因子包括國民所得與人口密度等納入長短程通用水筒模式中予以考慮,以建立蘊含人文因子之瞬時單位歷線,並藉以評估集水區因土地利用改變所導致逕流歷線特性變化之因果關係。 本研究以基隆河上游五堵集水區為研究區域,探討都市化之水文環境改變對不同時期之降雨-逕流事件之影響,由結果可知都市化程度之多寡對於集水區逕流量之形成有顯著之影響。本研究提出建構人文型瞬時單位歷線之構想,可提供未來都會區水文規劃之參考。 | zh_TW |
| dc.description.abstract | The average annual rainfall in Taiwan is 2,500 mm. Rainfall is temporally and spatially non-uniform. In the recent 30 years, typhoon-related damages have exacerbated due to development of urbanization, population concentration, and the change of land use. The calamity that a lot of storms cause is more serious than in the past.
Previous studies have explored the geographic factor or hydrologic parameter mainly related to hydrologic models. However, no previous research has been undertaken into the influence that the humane factor. The results cause environmental changes by urbanization can sum up with the increase of impermeable area and improve the density of population. This research uses the Analytic Hierarchy Process to consider the humane factor in the hydrologic models. The analytical results achieved in this study can be applied for urban watershed management in Taiwan. The model is calibrated and validated by the rainfall-runoff records of selected typhoon events occurred at the upstream watershed of Wu-tu, Keelung River Basin. The results suggest the effect of urbanization will advance the time of concentration and grow in quantity of flood peak indeed. Flow peak is underestimated by using parameters calibrated from earlier stages of urbanization. It implies degree of urbanization will effect basin’s runoff remarkably. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T16:36:39Z (GMT). No. of bitstreams: 1 ntu-94-R92622021-1.pdf: 2226118 bytes, checksum: 6605ec37db841cff15492ecf416dc411 (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | 目 錄
謝 誌 Ⅰ 摘 要 Ⅱ ABSTRACT Ⅲ 目 錄 Ⅳ 圖 錄 Ⅵ 表 錄 Ⅷ 第一章 緒 論 1 一、研究動機 1 二、文獻回顧 3 三、研究目的與方法 5 第二章 長短程通用水筒模式 8 一、LST模式架構 8 二、敏感度分析 12 三、參數優選法 13 四、模式合適性之校驗 17 第三章 分析階層程序法 20 第四章 人文型瞬時單位歷線之實例研析 25 一、研究流域簡介 26 二、研究資料蒐集與整理 28 三、人文型瞬時單位歷線之建構 30 第五章 結果與討論 33 第六章 結論與建議 46 一、結論 46 二、建議 47 參考文獻 49 附圖 55 附表 76 | |
| dc.language.iso | zh-TW | |
| dc.subject | 人文型瞬時單位歷線 | zh_TW |
| dc.subject | 人文因子 | zh_TW |
| dc.subject | 長短程通用水筒模式 | zh_TW |
| dc.subject | 分析階層程序法 | zh_TW |
| dc.subject | Humane Factor | en |
| dc.subject | The Humane-based Instantaneous Unit Hydrograph | en |
| dc.subject | Analytic HierarchyProcess | en |
| dc.subject | Long and Short Terms Tank Model | en |
| dc.title | 人文型瞬時單位歷線之建構及應用 | zh_TW |
| dc.title | Construction and Application of The Humane-based Instantaneous Unit Hydrograph | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 許銘熙,虞國興 | |
| dc.subject.keyword | 人文因子,長短程通用水筒模式,分析階層程序法,人文型瞬時單位歷線, | zh_TW |
| dc.subject.keyword | Humane Factor,Long and Short Terms Tank Model,Analytic HierarchyProcess,The Humane-based Instantaneous Unit Hydrograph, | en |
| dc.relation.page | 91 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-07-07 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物環境系統工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物環境系統工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 2.17 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
