Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38515Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 盧中仁(Chung-Jen Lu) | |
| dc.contributor.author | Chi-Chun Lin | en |
| dc.contributor.author | 林祺鈞 | zh_TW |
| dc.date.accessioned | 2021-06-13T16:35:54Z | - |
| dc.date.available | 2005-07-11 | |
| dc.date.copyright | 2005-07-11 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-07 | |
| dc.identifier.citation | [1] J. D. Alexander, 1964, “An automatic dynamic balancer,” Proceedings for the Second Southeastern Conference, Vol. 2, pp.415-426.
[2] J. W. Cade, 1965, “Self-compensating balancing in rotating mechanism,” Design News, pp.234-239. [3] J. Lee, 1995, “An analytical study of self-compensating dynamic balancer with damping fluid and ball,” Shock and Vibration, Vol. 2, pp.59-67. [4] J. Lee and W. K. Van Moorhen, 1996, “Analytical and experimental analysis of a self-compensating dynamic balancer in a rotating mechanism,” ASME Journal of Dynamic Systems, Measurement, and Control, Vol. 118, pp.468-475. [5] T. Majewski, 1988, “Position errors occurrence in self balancers used on rigid rotors of rotating machinery,” Mechanism and Machine Theory, Vol. 23, pp.71-77. [6] C. Rajalingham and S. Rakheja, 1998, “Whirl suppression in hand-held power tool rotors using guided rolling balancers,” Journal of Sound and Vibration, Vol.217, pp.453-466. [7] R. Silin, V. Royzman, A. Malygin, I. Borko and R. Tholovsky, 1999, “The research into automatic balancing processing of rotors with vertical axis of rotation,” Tenth World Congress on the Theory of Machine and Mechanisms, Oulu, Finland, June 20-24, pp. 1734-1739. [8] J. Chung and D. S. Ro, 1999, “Dynamic analysis of an automatic dynamic balancer for rotating mechanisms,” Journal of Sound and Vibration, Vol. 228, pp.1035-1056. [9] C. Hwang and J. Chung, 1999, “Dynamic analysis of an automatic ball balancer with double races,” ASME International Journal, Vol. 42, No.2, pp.265-272. [10] W.-Y. Huang, C.-P. Chao, J.-R. Kang and C.-K. Sung, 2002, “The application of ball-type balancers for radial vibration reduction of high-speed optic disk drives,” Journal of Sound and Vibration, Vol. 250, pp.415-430. [11] 黃偉煜, 1999, ”創新自動平衡裝置設計,” 清華大學碩士論文 [12] J.-R. Kang, C.-P. Chao, C.-L. Huang and C.-K. Sung, 2001, “The dynamics of a ball-type balancer system equipped with a pair of free-moving balancing masses,” ASME Journal of Vibration and Acoustics, Vol. 123, pp.456-465. [13] 康展榮, 2000, “滾珠型自動平衡裝置的分析與設計,” 清華大學碩士論文 [14] 呂惠中, 2001, “滾動摩擦阻力對滾珠型自動平衡裝置性能的影響,” 清華大學碩士論文 [15] 黃耀德, 2001, “滾珠型自動平衡裝置對轉子非平面運動的改善,” 清華大學碩士論文 [16] 吳司多, 2002, “滾珠型自動平衡裝置對轉子非平面搖擺運動的影響,” 清華大學碩士論文 [17] 陳志強, 2003, “單滾珠自動平衡機構的動態特性,”台灣大學碩士論文 [18] 曾恩祥, 2004, “雙滾珠自動平衡機構的動態特性,”台灣大學碩士論文 [19] Francis C. Moon, 1998, Applied Dynamics, John Wiley & sons, Inc. NY. USA [20] I. S. Gradshteyn and I. M. Ryzhik, 2000, Tables of Integrals, Series, and Products, 6th ed. San Diego, CA: Academic Press, p.1119. [21] Richard C. Dorf and Robert H. Bishop, 1998, Modern Control Systems, 6th ed. Addison Wesley Longman Inc., p.238. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38515 | - |
| dc.description.abstract | 滾珠型自動平衡裝置已成功的應用在碟狀剛性轉子的自動平衡,關於單平面上滾珠型自動平衡裝置的理論與特性也有詳細的研究。然而對於滾珠型自動平衡裝置在消除剛性長轉子偏心振動上的效能,迄今未有詳細的討論。本文的目的即為評估滾珠自動平衡裝置對消除長轉子偏心振動的可行性。為了簡化問題,我們探討自轉陀螺機構的偏心振動:假設剛性長轉子的一端固定,另一端的支撐系統可由等向性的彈簧和黏滯阻尼代表,在支撐端加上滾珠型自動平衡裝置。首先利用Lagrange’s equations推導運動方程式。在小變形的條件下,我們針對完全平衡和部分平衡分別選擇適當的座標系以得到非時變的運動方程式,並證明這些運動方程式為一階近似。接著求出系統的平衡解,探討系統參數對於平衡解的穩定性影響。理論分析結果顯示在適當條件下滾珠自動平衡裝置能有效消除自轉陀螺機構的振動。 | zh_TW |
| dc.description.abstract | Ball-type automatic balancers have been successfully employed to balance rotors of the rigid disk type. The theoretic basis and properties of automatic balancing on a single plane have been investigated in detail. However, little research has been done regarding the effects of ball-type automatic balancers on the balancing of long rigid rotors. The purpose of this thesis is to evaluate the feasibility of using ball-type automatic balancers to eliminate imbalanced vibrations of long rigid rotors. In order to simplify the problem, we study spinning-top type mechanisms. The main part of the mechanism is a long rigid rotor spinning at a constant speed. One end of the spinning axis is fixed and the other end is connected to the ground via a suspension system. The suspension system can be treated as a set of isotropic linear springs and viscous dampers. A ball-type balancer is installed on the suspension end of the rotor. Lagrange’s equations are used to derive the governing equations. When the deformation of the rotor is small, in order to get time-invariant equations, suitable coordinate systems are employed for the perfect balancing and partial balancing situations, respectively. We can show that these sets of governing equations are first order approximations to each other. From the governing equations, we can determine the equilibrium positions. The influence of system parameters on the stability of the equilibrium positions are studied in detail. The results, which are confirmed by numerical analysis, indicate that ball-type automatic balancers can effectively reduce the imbalance vibration of long rigid rotors. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T16:35:54Z (GMT). No. of bitstreams: 1 ntu-94-R92522505-1.pdf: 1504579 bytes, checksum: a10bc295c747f4841670dbf3afa9e9c4 (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | 第一章 緒論……………………………………………………………………………1
1-1 研究動機………………………………………………………………………1 1-2 文獻回顧………………………………………………………………………1 第二章 理論分析與運動方程式………………………………………………………3 2-1 系統架構………………………………………………………………………3 2-2 運動方程式……………………………………………………………………5 2-2-1 C1座標系之運動方程式………………………………………………5 2-2-2 C2座標系之運動方程式………………………………………………9 2-2-3 C1A座標系之運動方程式…………………………………………11 2-3 等效質量與三組運動方程式的無因次化…………………………………14 第三章 暫態分析與平衡位置…………………………………………………………18 3-1 暫態分析……………………………………………………………………18 3-2 平衡位置……………………………………………………………………25 3-2-1 單滾珠平衡位置……………………………………………………26 3-2-2 雙滾珠平衡位置……………………………………………………37 第四章 穩定性分析……………………………………………………………………42 4-1 系統的線性化及特徵值(eigenvalue)檢驗穩定性…………………………42 4-2 Routh-Hurwitz Stability Criterion Analysis…………………………………42 4-2-1 Routh-Hurwitz Criterion……………………………………………42 4-2-2 C2座標系運動方程式穩定性分析, …………………………44 4-2-3 C1A座標系運動方程式穩定性分析, ………………………45 4-3 參數變化及工作轉速穩定區域…………………………………………46 4-3-1 單滾珠平衡位置之穩定性…………………………………………46 4-3-2 雙滾珠平衡位置之穩定性…………………………………………51 4-4 參數變化之暫態運動討論…………………………………………………54 第五章 旋轉圓盤模擬…………………………………………………………………57 5-1 旋轉圓盤……………………………………………………………………57 5-2 旋轉圓盤的暫態分析………………………………………………………59 第六章 結論……………………………………………………………………………62 附錄A……………………………………………………………………………………63 附錄B……………………………………………………………………………………65 附錄C……………………………………………………………………………………68 附錄D……………………………………………………………………………………84 參考文獻…………………………………………………………………………………88 | |
| dc.language.iso | zh-TW | |
| dc.subject | 自轉陀螺 | zh_TW |
| dc.subject | 滾珠平衡 | zh_TW |
| dc.subject | Automatic Balancer | en |
| dc.subject | Spinning-Top | en |
| dc.title | 滾珠自動平衡裝置在自轉陀螺機構的應用 | zh_TW |
| dc.title | The Application of Ball-type Automatic Balancer to the Suppression of Vibration of Spinning-Top Type Mechanism | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蘇春?(Chun-hsi Su),傅增棣(Tseng-Ti Fu) | |
| dc.subject.keyword | 滾珠平衡,自轉陀螺, | zh_TW |
| dc.subject.keyword | Automatic Balancer,Spinning-Top, | en |
| dc.relation.page | 89 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-07-07 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| Appears in Collections: | 機械工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-94-1.pdf Restricted Access | 1.47 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
