請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38502完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 湯月碧(Yueh-Bih Tang) | |
| dc.contributor.author | Nai-Chen Cheng | en |
| dc.contributor.author | 鄭乃禎 | zh_TW |
| dc.date.accessioned | 2021-06-13T16:35:31Z | - |
| dc.date.available | 2006-08-02 | |
| dc.date.copyright | 2005-08-02 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-07 | |
| dc.identifier.citation | Aniansson A., Hedberg M., Henning G.B., and Grimby G. Muscle morphology, enzymatic activity, and muscle strength in elderly men: a follow-up study. Muscle Nerve. 1986; 9:585-91.
Balagopal P., Rooyackers O.E., Adey D.B., Ades P.A., and Nair K.S. Effects of aging on in vivo synthesis of skeletal muscle myosin heavy-chain and sarcoplasmic protein in humans. Am J Physiol. 1997; 273:E790-800. Bamman M.M., Clarke M.S., Talmadge R.J., and Feeback D.L.I.F.D.L. Enhanced protein electrophoresis technique for separating human skeletal muscle myosin heavy chain isoforms. Electrophoresis. 1999; 20:466-8. Barton E.R., Morris L., Musaro A., Rosenthal N., and Sweeney H.L. Muscle-specific expression of insulin-like growth factor I counters muscle decline in mdx mice. J Cell Biol. 2002; 157:137-48. Brooke M.H., and Kaiser K.K. Muscle fiber types: how many and what kind? Arch Neurol. 1970a; 23:369-79. Brooke M.H., and Kaiser K.K. Three human myosin ATPase systems and their importance in muscle pathology. Neurology. 1970b; 20:404-5. Brooks S.V., and Faulkner J.A. Contractile properties of skeletal muscles from young, adult and aged mice. J Physiol. 1988; 404:71-82. Charette S.L., McEvoy L., Pyka G., et al. Muscle hypertrophy response to resistance training in older women. J Appl Physiol. 1991; 70:1912-6. Coggan A.R., Spina R.J., King D.S., et al. Histochemical and enzymatic comparison of the gastrocnemius muscle of young and elderly men and women. J Gerontol. 1992; 47:B71-6. Conboy I.M., Conboy M.J., Smythe G.M., and Rando T.A. Notch-mediated restoration of regenerative potential to aged muscle. Science. 2003; 302:1575-7. Conboy I.M., Conboy M.J., Wagers A.J., Girma E.R., Weissman I.L., and Rando T.A. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature. 2005; 433:760-4. D'Antona G., Pellegrino M.A., Adami R., et al. The effect of ageing and immobilization on structure and function of human skeletal muscle fibres. J Physiol. 2003; 552:499-511. Deschenes M.R. Effects of aging on muscle fibre type and size. Sports Med. 2004; 34:809-24. Doherty T.J., Vandervoort A.A., Taylor A.W., and Brown W.F. Effects of motor unit losses on strength in older men and women. J Appl Physiol. 1993; 74:868-74. Essen-Gustavsson B., and Borges O. Histochemical and metabolic characteristics of human skeletal muscle in relation to age. Acta Physiol Scand. 1986; 126:107-14. Freilinger G., Happak W., Burggasser G., and Gruber H. Histochemical mapping and fiber size analysis of mimic muscles. Plast Reconstr Surg. 1990; 86:422-8. Fry A.C., Allemeier C.A., and Staron R.S. Correlation between percentage fiber type area and myosin heavy chain content in human skeletal muscle. Eur J Appl Physiol. 1994; 68:246-51. Gianni P., Jan K.J., Douglas M.J., Stuart P.M., and Tarnopolsky M.A. Oxidative stress and the mitochondrial theory of aging in human skeletal muscle. Exp Gerontol. 2004; 39:1391-400. Goodmurphy C.W., and Ovalle W.K. Morphological study of two human facial muscles: orbicularis oculi and corrugator supercilii. Clin Anat. 1999; 12:1-11. Gosain A.K., Klein M.H., Sudhakar P.V., and Prost R.W. A volumetric analysis of soft-tissue changes in the aging midface using high-resolution MRI: implications for facial rejuvenation. Plast Reconstr Surg. 2005; 115:1143-52; discussion 53-5. Hakkinen K., Kallinen M., Izquierdo M., et al. Changes in agonist-antagonist EMG, muscle CSA, and force during strength training in middle-aged and older people. J Appl Physiol. 1998; 84:1341-9. Hamra S.T. Repositioning the orbicularis oculi muscle in the composite rhytidectomy. Plast Reconstr Surg. 1992; 90:14-22. Happak W., Burggasser G., and Gruber H. Histochemical characteristics of human mimic muscles. J Neurol Sci. 1988; 83:25-35. Kirkeby S., and Garbarsch C. Aging affects different human muscles in various ways. An image analysis of the histomorphometric characteristics of fiber types in human masseter and vastus lateralis muscles from young adults and the very old. Histol Histopathol. 2000; 15:61-71. Kjellgren D., Thornell L.E., Andersen J., and Pedrosa-Domellof F. Myosin heavy chain isoforms in human extraocular muscles. Invest Ophthalmol Vis Sci. 2003; 44:1419-25. Klitgaard H., Zhou M., Schiaffino S., Betto R., Salviati G., and Saltin B. Ageing alters the myosin heavy chain composition of single fibres from human skeletal muscle. Acta Physiol Scand. 1990; 140:55-62. Korfage J.A., and Van Eijden T.M. Myosin heavy chain composition in human masticatory muscles by immunohistochemistry and gel electrophoresis. J Histochem Cytochem. 2003; 51:113-9. Lander T., Wirtschafter J.D., and McLoon L.K. Orbicularis oculi muscle fibers are relatively short and heterogeneous in length. Invest Ophthalmol Vis Sci. 1996; 37:1732-9. Larsson L., Li X., and Frontera W.R. Effects of aging on shortening velocity and myosin isoform composition in single human skeletal muscle cells. Am J Physiol. 1997; 272:C638-49. Larsson L., Sjodin B., and Karlsson J. Histochemical and biochemical changes in human skeletal muscle with age in sedentary males, age 22--65 years. Acta Physiol Scand. 1978; 103:31-9. Lee S., Barton E.R., Sweeney H.L., and Farrar R.P. Viral expression of insulin-like growth factor-I enhances muscle hypertrophy in resistance-trained rats. J Appl Physiol. 2004; 96:1097-104. Lexell J., Downham D., and Sjostrom M. Distribution of different fibre types in human skeletal muscles. Fibre type arrangement in m. vastus lateralis from three groups of healthy men between 15 and 83 years. J Neurol Sci. 1986; 72:211-22. Lexell J., Taylor C.C., and Sjostrom M. What is the cause of the ageing atrophy? Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15- to 83-year-old men. J Neurol Sci. 1988; 84:275-94. Lindle R.S., Metter E.J., Lynch N.A., et al. Age and gender comparisons of muscle strength in 654 women and men aged 20-93 yr. J Appl Physiol. 1997; 83:1581-7. Liu P.Y., Swerdloff R.S., and Veldhuis J.D. Clinical review 171: The rationale, efficacy and safety of androgen therapy in older men: future research and current practice recommendations. J Clin Endocrinol Metab. 2004; 89:4789-96. Lodish H. Protein structures and function. Molecular cell biology. 4th ed. 2000:87. McCall G.E., Byrnes W.C., Dickinson A.L., and Fleck S.J. Sample size required for the accurate determination of fiber area and capillarity of human skeletal muscle. Can J Appl Physiol. 1998; 23:594-9. McLoon L.K., and Christiansen S.P. Increasing extraocular muscle strength with insulin-like growth factor II. Invest Ophthalmol Vis Sci. 2003; 44:3866-72. Monemi M., Eriksson P.O., Dubail I., Butler-Browne G.S., and Thornell L.E. Fetal myosin heavy chain increases in human masseter muscle during aging. FEBS Lett. 1996; 386:87-90. Monemi M., Eriksson P.O., Eriksson A., and Thornell L.E. Adverse changes in fibre type composition of the human masseter versus biceps brachii muscle during aging. J Neurol Sci. 1998; 154:35-48. Monemi M., Eriksson P.O., Kadi F., Butler-Browne G.S., and Thornell L.E. Opposite changes in myosin heavy chain composition of human masseter and biceps brachii muscles during aging. J Musc Res Cell Motil. 1999a; 20:351-61. Monemi M., Kadi F., Liu J.X., Thornell L.E., and Eriksson P.O. Adverse changes in fibre type and myosin heavy chain compositions of human jaw muscle vs. limb muscle during ageing. Acta Physiol Scand. 1999b; 167:339-45. Monemi M., Liu J.X., Thornell L.E., and Eriksson P.O. Myosin heavy chain composition of the human lateral pterygoid and digastric muscles in young adults and elderly. J Musc Res Cell Motil. 2000; 21:303-12. Nair K.S. Aging muscle. Am J Clin Nutr. 2005; 81:953-63. Nelson C.C., and Blaivas M. Orbicularis oculi muscle in children. Histologic and histochemical characteristics. Invest Ophthalmol Vis Sci. 1991; 32:646-54. Papadakis M.A., Grady D., Black D., et al. Growth hormone replacement in healthy older men improves body composition but not functional ability. Ann Intern Med. 1996; 124:708-16. Peshori K.R., Schicatano E.J., Gopalaswamy R., Sahay E., and Evinger C. Aging of the trigeminal blink system. Exp Brain Res. 2001; 136:351-63. Pette D., Peuker H., and Staron R.S. The impact of biochemical methods for single muscle fibre analysis. Acta Physiol Scand. 1999; 166:261-77. Pette D., and Staron R.S. Mammalian skeletal muscle fiber type transitions. Int Rev Cytol. 1997; 170:143-223. Proctor D.N., Balagopal P., and Nair K.S. Age-related sarcopenia in humans is associated with reduced synthetic rates of specific muscle proteins. J Nutr. 1998; 128:351S-55S. Pyka G., Lindenberger E., Charette S., and Marcus R. Muscle strength and fiber adaptations to a year-long resistance training program in elderly men and women. J Gerontol. 1994; 49:M22-7. Sale D.G. Neural adaptation to resistance training. Med Sci Sports Exerc. 1988; 20:S135-45. Schantz P., Randall-Fox E., Hutchison W., Tyden A., and Astrand P.O. Muscle fibre type distribution, muscle cross-sectional area and maximal voluntary strength in humans. Acta Physiol Scand. 1983; 117:219-26. Scott W., Stevens J., and Binder-Macleod S.A. Human skeletal muscle fiber type classifications. Phys Ther. 2001; 81:1810-6. Serrano A.L., Perez M., Lucia A., Chicharro J.L., Quiroz-Rothe E., and Rivero J.L. Immunolabelling, histochemistry and in situ hybridisation in human skeletal muscle fibres to detect myosin heavy chain expression at the protein and mRNA level. J Anat. 2001; 199:329-37. Sipila S., and Suominen H. Effects of strength and endurance training on thigh and leg muscle mass and composition in elderly women. J Appl Physiol. 1995; 78:334-40. Smerdu V., Karsch-Mizrachi I., Campione M., Leinwand L., and Schiaffino S. Type IIx myosin heavy chain transcripts are expressed in type IIb fibers of human skeletal muscle. Am J Physiol. 1994; 267:C1723-8. Staron R.S. Human skeletal muscle fiber types: delineation, development, and distribution. Can J Appl Physiol. 1997; 22:307-27. Staron R.S., Hagerman F.C., Hikida R.S., et al. Fiber type composition of the vastus lateralis muscle of young men and women. J Histochem Cytochem. 2000; 48:623-9. Talmadge R.J., and Roy R.R. Electrophoretic separation of rat skeletal muscle myosin heavy-chain isoforms. J Appl Physiol. 1993; 75:2337-40. Wei Y.H. Mitochondrial DNA mutations and oxidative damage in aging and diseases: an emerging paradigm of gerontology and medicine. Proc Natl Sci Counc Repub China B. 1998; 22:55-67. Welle S., Bhatt K., and Thornton C. Polyadenylated RNA, actin mRNA, and myosin heavy chain mRNA in young and old human skeletal muscle. Am J Physiol. 1996; 270:E224-9. Yarasheski K.E., Zachwieja J.J., Campbell J.A., and Bier D.M. Effect of growth hormone and resistance exercise on muscle growth and strength in older men. Am J Physiol. 1995; 268:E268-76. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38502 | - |
| dc.description.abstract | 1.1 研究背景與目的
眼輪匝肌 (Orbicularis oculi muscle) 在眼睛四周的解剖構造中佔了關鍵地位,並在這區域的老化過程中扮演了重要角色。而眼睛四周的年輕化 (periorbital rejuvenation) 一直是整形外科領域中極有興趣的課題,我們相信藉由了解人類眼輪匝肌老化相關的變化,將對改善現有的年輕化技術或開發新的年輕化方法建立深入研究的基礎。然而文獻中並沒有任何相關的研究報告,因為眼輪匝肌的採樣不僅困難且有傷及眼球的危險。事實上在眼皮整型手術中所切除的軟組織中即含有小部分的眼輪匝肌,所以我們以接受上眼皮整型手術 (upper blepharoplasty)的病人為對象,取得不同年紀病人的眼輪匝肌樣本。 我們以這些眼輪匝肌樣本為研究材料,研究的第一部分探討眼輪匝肌因老化產生的組織型態學 (histomorphometry)變化,主要為三種肌肉纖維 (I, IIA, IIB)的組成及截面積之改變。研究的第二部分則探討各亞型的肌凝重鏈蛋白 (myosin heavy chain, MHC)在眼輪匝肌中的組成比例,藉評估不同年紀人類的眼輪匝肌中三種亞型 (I, IIA, IIX)的相對含量,進而了解眼輪匝肌因老化產生的分子生物學相關變化。 1.2 研究材料與方法 此研究的第一部分是以組織型態學的方法,評估人類眼輪匝肌因老化產生的各型肌肉纖維組成變化。眼輪匝肌的肌肉樣本自手術中取得後立刻在液態氮中做冷凍包埋並於-80℃的冷凍庫中保存,實驗時先作冷凍切片,對肌纖維中的腺三磷酸酵素(adenosine triphosphatase, ATPase)作組織化學染色。我們在顯微鏡下觀察這些切片,並選擇具橫斷切面的適當區域照相,相片掃描入電腦後以影像處理軟體分析即可得到該區域中各肌肉纖維的數目及其所佔的面積,並可進一步算出不同肌肉纖維間的比例及其平均直徑等組織型態學變數。 此研究第二部分的設計是以分子生物學的方法客觀評估各型的肌凝重鏈蛋白在人類眼輪匝肌中的組成比例,進而了解其因老化產生的相關變化。因為肌凝重鏈蛋白是構成肌纖維的主要蛋白質,且不同亞型的肌凝重鏈蛋白存在於不同型的肌肉纖維中,並決定其收縮的速度,故肌肉中各亞型的肌凝重鏈蛋白所佔比例決定了某肌肉之收縮特性,並可間接代表不同肌肉纖維間的比例。眼輪匝肌的肌肉樣本自上眼皮整型手術中取得後立刻在液態氮中做冷凍包埋並於-80℃的冷凍庫中保存,實驗時先做冷凍切片,接著將切片溶於特殊緩衝液中,再以SDS-PAGE電泳分離出不同亞型的肌凝重鏈蛋白。我們將銀染色後的膠片掃描入電腦,以影像處理軟體分析膠片上各條紋的密度,即可進一步算出不同亞型的肌凝重鏈蛋白間的相對含量。 在統計分析方面,我們控制性別此項干擾因子後,將各組織型態學變數及不同亞型的肌凝重鏈蛋白所佔比例與年齡作線性回歸分析。此外,我們選出年輕與老年兩組病人,年輕組指的是小於50歲病人,老年組指的是70歲以上的病人。我們以Wilxoson ranksum test來分析這兩組其組織型態學變數及不同亞型的肌凝重鏈蛋白間比例是否有所差異。我們設定的顯著p值為<0.05。 1.3 研究結果 本實驗第一部分為組織型態學的研究,共收集到35位病人的眼輪匝肌樣本適合作分析,年齡分布為21至82歲。平均第 I型肌纖維所佔比例為12.5%,IIA型肌纖維所佔比例為37.1%,IIB型肌纖維所佔比例為50.4%。 我們控制性別此項干擾因子後,將各組織型態學變數與年齡作線性回歸分析。我們所分析的組織型態學變數包括各類型肌纖維所占數量的百分比,肌纖維的平均直徑及截面積,及各類型肌纖維所占面積的百分比。線性回歸分析的結果並無任何變數具有統計上的顯著意義。此外我們將小於50歲的11位病人與大於70歲的11位病人分組比較,發現老年組 (大於70歲病人)中IIA型肌纖維的平均截面積為 710 ± 47 µm2,相較於年輕組 (小於50歲病人)的IIA型肌纖維平均截面積800 ± 96 µm2,其差異在統計學上則是有意義的。此外,老年組的眼輪匝肌平均肌肉纖維截面積 (mean fiber area)為 674 ± 51 µm2,較年輕組的平均肌纖維面積726 ± 47 µm2顯著為小,其餘組織型態學變數之差異則不具統計上的顯著意義。老年組與年輕組間所計算出三種的肌纖維比例分布並無顯著差異,三種肌纖維所佔比例由多至少次序為 IIB > IIA > I。三種肌纖維所占的相對肌纖維面積比例分布在兩組間亦無顯著差異,相對肌纖維面積比例由多至少次序同樣為 IIB > IIA > I 。 第二部分為評估各亞型的肌凝重鏈蛋白在人類眼輪匝肌中的組成比例,總共收集到58位病人之眼輪匝肌樣本,病人的年齡範圍自21歲到91歲。平均MHC I的相對含量為 21.8 ± 4.7 %,MHC IIA的相對含量為 37.4 ± 5.5 %, MHC IIB的相對含量為 40.8 ± 5.7 %。控制性別此項干擾因子後,我們將不同亞型的肌凝重鏈蛋白所佔比例與年齡作線性回歸分析。我們觀察到隨年齡的增長,眼輪匝肌中IIA型肌凝重鏈蛋白所佔比例顯著地減少,第I及IIX型肌凝重鏈蛋白所佔比例則不具統計上的顯著變化。如同實驗的第一部分,我們將接受上眼皮整型手術的病人依年齡分組,小於50歲的17位病人屬年輕組,大於70歲的20位病人屬老年組,兩者相互比較,但各亞型肌凝重鏈蛋白所佔比例在兩組間之差異不具統計上的顯著意義。 1.4 結論 在第一部分組織型態學的研究中,我們觀察到老年人相較於年輕人,其眼輪匝肌中平均肌肉纖維截面積及IIA纖維截面積顯著減少,但各型肌肉纖維組成比例並不隨著年齡而有所變化。在第二部分評估各亞型肌凝重鏈蛋白的組成比例的研究中,我們發現年齡的增加與眼輪匝肌中IIA型肌凝重鏈蛋白所佔比例減少是有相關的。 綜合我們的結果,與我們收集到的文獻相較,顯示出人類眼輪匝肌老化現象並不完全相同於四肢或咀嚼肌肉,在肌肉纖維的萎縮形態與肌凝重鏈蛋白亞型組成比例的改變上呈現其獨特的老化模式。藉由了解人類眼輪匝肌之老化模式,未來我們即可客觀評估一些抗老化療法對其老化過程的影響,並對開發新的年輕化方法建立深入研究的基礎。 | zh_TW |
| dc.description.abstract | Purpose.
To investigate the age-related changes in muscle fiber histomorphometry and myosin heavy chain (MHC) composition of human orbicularis oculi muscle (OOM). Materials and Methods. Eyelid specimens containing OOM from 58 adult human subjects (age range, 21 to 91 years) were collected during upper blepharoplasty procedures. Quantitative measures of muscle fiber sizes and fiber type distributions were performed using myofibrillar adenosine triphosphatase (mATPase) staining. Myosin heavy chain (MHC) isoform distribution of the muscle samples was also determined by sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE). Results. The majority of muscle fiber in human OOM was type II fiber. In the aging muscles, there was no relative preferential loss of a fiber type. Aging was associated with a decreased mean fiber area and type IIA fiber area in human OOM, whereas cross section areas of type I and IIB fiber were unchanged. However, there was no significant change in relative area distribution of the fiber types when young and old muscles were compared. As for relative MHC compositions of human OOM, a decrease of MHC IIA relative content was observed with aging, while relative contents of MHC I and IIX did not change significantly. Conclusions. The present study revealed that human OOM has a distinct pattern of aging, which differs from limb or masticatory muscles in both fiber histomorphometry and MHC composition. The information could therefore serve as a baseline for future investigations on age-related OOM dysfunction or periorbital rejuvenation techniques. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T16:35:31Z (GMT). No. of bitstreams: 1 ntu-94-P92421013-1.pdf: 1984076 bytes, checksum: 6db53038f1017e8415d6b881a656efc1 (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | 一. 中文摘要
1.1 研究背景與目的……………………………………………. 1 1.2 研究材料與方法……………………………………………. 1 1.3 研究結果……………………………………………………. 2 1.4 結論…………………………………………………………. 2 二. 緒論 2.1骨骼肌的組織學構造……………………………………….. 4 2.2 骨骼肌的肌肉纖維分類方法………………………………. 5 2.3 骨骼肌因老化產生之組織型態學變化……………………. 5 2.4 肌凝重鏈蛋白的亞型………………………………………. 6 2.5 肌凝重鏈蛋白亞型因老化產生之組成比例變化…………. 7 2.6 人類眼輪匝肌的解剖構造…………………………………. 7 2.7 研究目的……………………………………………………. 8 三. 研究方法與材料 3.1 樣本的收集…………………………………………………. 9 3.2 肌肉纖維組成與組織形態學之評估………………………. 9 3.3 肌凝重鏈蛋白不同亞型組成變化之分析………………… 10 3.4 統計分析…………………………………………………… 11 四. 結果 4.1 組織化學染色……………………………………………… 12 4.2 組織型態學變數分析……………………………………… 12 4.3 肌凝重鏈蛋白亞型的相對含量…………………………… 13 五. 討論 5.1 老化引起的人體肌肉組織變化…………………………… 15 5.2 眼輪匝肌的肌纖維組成之功能性意義…………………… 15 5.3 老化對眼輪匝肌之肌纖維組成的影響…………………… 16 5.4 老化對眼輪匝肌之肌凝重鏈蛋白組成的影響…………… 17 5.5 本實驗的限制………………………. …………………….. 18 六. 展望 6.1 本實驗的主要成果及未來方向…………………………… 19 6.2 骨骼肌回春的進一步研究………………………………… 19 6.3 眼輪匝肌回春方法的可能機轉…………………………… 20 七. 英文簡述 ………………………. …………………………. 21 八. 參考文獻………………………. ………………………….... 27 九. 圖表………………………. ………………………………….. 32 十. 附錄:修業期間發表之論文………………………… 50 | |
| dc.language.iso | zh-TW | |
| dc.subject | SDS-PAGE | zh_TW |
| dc.subject | 肌凝重鏈蛋白 | zh_TW |
| dc.subject | 組織化學染色 | zh_TW |
| dc.subject | 組織型態學 | zh_TW |
| dc.subject | 肌肉纖維 | zh_TW |
| dc.subject | 上眼皮整型術 | zh_TW |
| dc.subject | 眼睛四周的年輕化 | zh_TW |
| dc.subject | 眼輪匝肌 | zh_TW |
| dc.subject | 老化 | zh_TW |
| dc.subject | Aging | en |
| dc.subject | Orbicularis oculi muscle | en |
| dc.subject | Periorbital rejuvenation | en |
| dc.subject | Upper blepharoplasty | en |
| dc.subject | Muscle fiber | en |
| dc.subject | Histomorphometry | en |
| dc.subject | Histochemical staining | en |
| dc.subject | Myosin heavy chain | en |
| dc.subject | SDS-PAGE | en |
| dc.title | 人類眼輪匝肌因老化產生的肌肉纖維及
肌凝重鏈蛋白組成變化 | zh_TW |
| dc.title | Age-related Changes in Fiber Type and Myosin Heavy Chain Compositions of Human Orbicularis Oculi Muscle | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李伯皇,高嘉宏,廖述朗 | |
| dc.subject.keyword | 老化,眼輪匝肌,眼睛四周的年輕化,上眼皮整型術,肌肉纖維,組織型態學,組織化學染色,肌凝重鏈蛋白,SDS-PAGE, | zh_TW |
| dc.subject.keyword | Aging,Orbicularis oculi muscle,Periorbital rejuvenation,Upper blepharoplasty,Muscle fiber,Histomorphometry,Histochemical staining,Myosin heavy chain,SDS-PAGE, | en |
| dc.relation.page | 51 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-07-08 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 臨床醫學研究所 | zh_TW |
| 顯示於系所單位: | 臨床醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 1.94 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
