Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3848
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor戴子安(Chi-An Dai)
dc.contributor.authorHo-Yi Sunen
dc.contributor.author孫合毅zh_TW
dc.date.accessioned2021-05-13T08:37:30Z-
dc.date.available2018-08-03
dc.date.available2021-05-13T08:37:30Z-
dc.date.copyright2016-08-03
dc.date.issued2016
dc.date.submitted2016-07-27
dc.identifier.citation1. Banerjee, I., R.C. Pangule, and R.S. Kane, Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv Mater, 2011. 23(6): p. 690-718.
2. Shin, H., S. Jo, and A.G. Mikos, Biomimetic materials for tissue engineering. Biomaterials, 2003. 24(24): p. 4353-4364.
3. Castner, D.G. and B.D. Ratner, Biomedical surface science: Foundations to frontiers. Surface Science, 2002. 500(1–3): p. 28-60.
4. Stevens, M.M. and J.H. George, Exploring and engineering the cell surface interface. Science, 2005. 310(5751): p. 1135-1138.
5. von der Mark, K., et al., Nanoscale engineering of biomimetic surfaces: cues from the extracellular matrix. Cell and Tissue Research, 2010. 339(1): p. 131-153.
6. Jensen, U.B., S. Lowell, and F.M. Watt, The spatial relationship between stem cells and their progeny in the basal layer of human epidermis: a new view based on whole-mount labelling and lineage analysis. Development, 1999. 126(11): p. 2409-2418.
7. Darouiche, R.O., Treatment of Infections Associated with Surgical Implants. New England Journal of Medicine, 2004. 350(14): p. 1422-1429.
8. Norowski, P.A. and J.D. Bumgardner, Biomaterial and antibiotic strategies for peri-implantitis: A review. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2009. 88B(2): p. 530-543.
9. Eisenberg, M.J. and K.J. Konnyu, Review of Randomized Clinical Trials of Drug-Eluting Stents for the Prevention of In-Stent Restenosis. The American Journal of Cardiology, 2006. 98(3): p. 375-382.
10. Lewis, F. and D. Mantovani, Methods to Investigate the Adhesion of Soft Nano-Coatings on Metal Substrates – Application to Polymer-Coated Stents. Macromolecular Materials and Engineering, 2009. 294(1): p. 11-19.
11. Luo, Y., et al., The friction and wear behavior of WC coating on medical grade titanium alloys. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2013. 227(8): p. 845-849.
12. Sun, T., et al., Functional biointerface materials inspired from nature. Chem. Soc. Rev., 2011. 40(5): p. 2909-2921.
13. Cole, M.A., et al., Stimuli-responsive interfaces and systems for the control of protein–surface and cell–surface interactions. Biomaterials, 2009. 30(9): p. 1827-1850.
14. Geiger, B., J.P. Spatz, and A.D. Bershadsky, Environmental sensing through focal adhesions. Nat. Rev. Mole. Cell Biol., 2009. 10(1): p. 21-33.
15. Sniadecki, N.J., et al., Magnetic microposts as an approach to apply forces to living cells. Proc. Natl. Acad. Sci. U.S.A., 2007. 104: p. 14553-14558.
16. Dalby, M.J., et al., Use of nanotopography to study mechanotransduction in fibroblasts - methods and perspectives. Eur. J. Cell Biol., 2004. 83(4): p. 159-169.
17. Nie, Z. and E. Kumacheva, Patterning surfaces with functional polymers. Nat. Mater., 2008. 7(4): p. 277-290.
18. Biswas, A., et al., Advances in top–down and bottom–up surface nanofabrication: Techniques, applications & future prospects. Adv. Coll. Inter. Sci., 2012. 170(1–2): p. 2-27.
19. Lu, W. and C.M. Lieber, Nanoelectronics from the bottom up. Nat. Mater., 2007. 6(11): p. 841-850.
20. Hauser, C.A.E. and S. Zhang, Designer self-assembling peptide nanofiber biological materials. Chem. Soc. Rev., 2010. 39(8): p. 2780-2790.
21. Kramer, P., et al., Polymerization of para-xylylene derivatives (parylene polymerization). I. Deposition kinetics for parylene N and parylene C. Journal of Polymer Science: Polymer Chemistry Edition, 1984. 22(2): p. 475-491.
22. Wu, P., et al., Deposition of High Purity Parylene- F Using Low Pressure Low Temperature Chemical Vapor Deposition. Journal of Electronic Materials, 1997. 26(8): p. 949-953.
23. Fortin, J.B. and T.M. Lu, A Model for the Chemical Vapor Deposition of Poly(para-xylylene) (Parylene) Thin Films. Chemistry of Materials, 2002. 14(5): p. 1945-1949.
24. Chen, H.-Y. and J. Lahann, Designable Biointerfaces Using Vapor-Based Reactive Polymers. Langmuir, 2010. 27(1): p. 34-48.
25. Naddaka, M., et al., Functionalization of parylene during its chemical vapor deposition. Journal of Polymer Science Part A: Polymer Chemistry, 2011. 49(13): p. 2952-2958.
26. Yang, R., A. Asatekin, and K.K. Gleason, Design of conformal, substrate-independent surface modification for controlled protein adsorption by chemical vapor deposition (CVD). Soft Matter, 2012. 8(1): p. 31-43.
27. Chen, H.-Y., et al., Colloids with high-definition surface structures. Proceedings of the National Academy of Sciences, 2007. 104(27): p. 11173-11178.
28. Nandivada, H., et al., Reactive Polymer Coatings that “Click”. Angewandte Chemie International Edition, 2006. 45(20): p. 3360-3363.
29. Katira, P., et al., Quantifying the Performance of Protein-Resisting Surfaces at Ultra-Low Protein Coverages using Kinesin Motor Proteins as Probes. Advanced Materials, 2007. 19(20): p. 3171-3176.
30. Chen, H.-Y. and J. Lahann, Preparation of Non-Fouling Coatings Made by Chemical Vapor Deposition Polymerization. Polymer Preprints, 2005.
31. Wu, J.-T., et al., Reactive Polymer Coatings: A General Route to Thiol-ene and Thiol-yne Click Reactions. Macromolecular Rapid Communications, 2012. 33(10): p. 922-927.
32. Tsai, M.-Y., et al., Vapor-based synthesis of maleimide-functionalized coating for biointerface engineering. Chemical Communications, 2012. 48(89): p. 10969-10971.
33. Chen, H.-Y., et al., Vapor-based tri-functional coatings. Chemical Communications, 2013. 49(40): p. 4531-4533.
34. Elkasabi, Y., et al., Towards Multipotent Coatings: Chemical Vapor Deposition and Biofunctionalization of Carbonyl-Substituted Copolymers. Macromolecular Rapid Communications, 2008. 29(11): p. 855-870.
35. Elkasabi, Y., H.-Y. Chen, and J. Lahann, Multipotent Polymer Coatings Based on Chemical Vapor Deposition Copolymerization. Advanced Materials, 2006. 18(12): p. 1521-1526.
36. Lahann, J. and R. Langer, Novel Poly(p-xylylenes):  Thin Films with Tailored Chemical and Optical Properties. Macromolecules, 2002. 35(11): p. 4380-4386.
37. Seymour, J.P., et al., The insulation performance of reactive parylene films in implantable electronic devices. Biomaterials, 2009. 30(31): p. 6158-6167.
38. Lahann, J., et al., Reactive Polymer Coatings:  A First Step toward Surface Engineering of Microfluidic Devices. Anal. Chem., 2003. 75(9): p. 2117-2122.
39. Lahann, J., et al., A New Method toward Microengineered Surfaces Based on Reactive Coating. Angewandte Chemie International Edition, 2001. 40(17): p. 3166-3169.
40. Chen, H.-Y. and J. Lahann, Vapor-Assisted Micropatterning in Replica Structures: A Solventless Approach towards Topologically and Chemically Designable Surfaces. Adv. Mater., 2007. 19(22): p. 3801-3808.
41. Chen, H.-Y. and J. Lahann, Fabrication of Discontinuous Surface Patterns within Microfluidic Channels Using Photodefinable Vapor-Based Polymer Coatings. Anal. Chem., 2005. 77(21): p. 6909-6914.
42. Sun, H.-Y., et al., Thiol-Reactive Parylenes as a Robust Coating for Biomedical Materials. Adv. Mater. Inter., 2014. 1(6): p. 1400093.
43. Chen, H.-Y., et al., Colloids with high-definition surface structures. Proc. Natl. Acad. Sci., 2007. 104(27): p. 11173-11178.
44. Wu, M.-G., et al., Vapor-Deposited Parylene Photoresist: A Multipotent Approach toward Chemically and Topographically Defined Biointerfaces. Langmuir, 2012. 28(40): p. 14313-14322.
45. Senkevich, J.J., et al., Selective deposition of ultrathin poly(p-lxylylene) films on dielectrics versus copper surfaces. Chemical Vapor Deposition, 2004. 10(5): p. 247-+.
46. Vaeth, K.M. and K.F. Jensen, Selective growth of poly(p-phenylene vinylene) prepared bg chemical vapor deposition. Advanced Materials, 1999. 11(10): p. 814-820.
47. Vaeth, K.M. and K.F. Jensen, Transition metals for selective chemical vapor deposition of parylene-based polymers. Chemistry of Materials, 2000. 12(5): p. 1305-1313.
48. Chen, H.-Y., et al., Substrate-Selective Chemical Vapor Deposition of Reactive Polymer Coatings. Advanced Materials, 2008. 20(18): p. 3474-3480.
49. D3359-02, A., Standard Test Methods for Measuring Adhesion by
Tape Test. ASTM International.
50. Iwatsuki, S., et al., Synthesis and Polymerization of 4-Vinyl [2.2]Paracyclophane. Polymer Bulletin, 1994. 32(1): p. 27-34.
51. Gorham, W.F., A New, General Synthetic Method for the Preparation of Linear Poly-p-xylylenes. Journal of Polymer Science Part A-1: Polymer Chemistry, 1966. 4(12): p. 3027-3039.
52. Lewis, F., et al., Study of the adhesion of thin plasma fluorocarbon coatings resisting plastic deformation for stent applications. Journal of Physics D: Applied Physics, 2008. 41(4): p. 045310.
53. Chen, C.-Y., et al., Low-shrinkage visible-light-curable urethane-modified epoxy acrylate/SiO2 composites as dental restorative materials. Composites Science and Technology, 2008. 68(13): p. 2811-2817.
54. Kasuya, M., et al., Quantification of ATRP initiator density on polymer latex particles by fluorescence labeling technique using copper-catalyzed azide-alkyne cycloaddition. Journal of Polymer Science Part A: Polymer Chemistry, 2013. 51(19): p. 4042-4051.
55. Fritsche, A., et al., Mechanical characterization of anti-infectious, anti-allergic, and bioactive coatings on orthopedic implant surfaces. Journal of Materials Science, 2009. 44(20): p. 5544-5551.
56. Marx, K.A., Quartz Crystal Microbalance:  A Useful Tool for Studying Thin Polymer Films and Complex Biomolecular Systems at the Solution−Surface Interface. Biomacromolecules, 2003. 4(5): p. 1099-1120.
57. Sauerbrey, G., Verwendung von Schwingquarzen zur Wagung dunner Schichten und zur Mikrowagung. Zeitschrift fur Physik, 1959. 155(2): p. 206-222.
58. Massia, S.P. and J.A. Hubbell, Vascular endothelial cell adhesion and spreading promoted by the peptide REDV of the IIICS region of plasma fibronectin is mediated by integrin alpha 4 beta 1. Journal of Biological Chemistry, 1992. 267(20): p. 14019-14026.
59. Plouffe, B.D., et al., Peptide-Mediated Selective Adhesion of Smooth Muscle and Endothelial Cells in Microfluidic Shear Flow. Langmuir, 2007. 23(9): p. 5050-5055.
60. Hoyle, C.E. and C.N. Bowman, Thiol-Ene Click Chemistry. Angewandte Chemie-International Edition, 2010. 49(9): p. 1540-1573.
61. Branch, D.W., et al., Long-term stability of grafted polyethylene glycol surfaces for use with microstamped substrates in neuronal cell culture. Biomaterials, 2001. 22(10): p. 1035-1047.
62. Nandivada, H., H.-Y. Chen, and J. Lahann, Vapor-Based Synthesis of Poly[(4-formyl-p-xylylene)-co-(p-xylylene)] and Its Use for Biomimetic Surface Modifications. Macromole. Rapid Comm., 2005. 26(22): p. 1794-1799.
63. Wu, J.-T., et al., Reactive Polymer Coatings: A General Route to Thiol-ene and Thiol-yne Click Reactions. Macromole. Rapid Comm., 2012. 33(10): p. 922-927.
64. Chen, H.-Y., et al., Substrate-Independent Dip-Pen Nanolithography Based on Reactive Coatings. J. Am. Chem. Soc., 2010. 132(51): p. 18023-18025.
65. Lu, B., et al., A study of the autofluorescence of parylene materials for [small mu ]TAS applications. Lab Chip, 2010. 10(14): p. 1826-1834.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3848-
dc.description.abstract藉由化學氣相層積技術所製備之聚對二甲苯高分子鍍膜,提供了良好的表面特性,創造了生物相容性,也提供選擇性改質的應用。這樣子的鍍膜技術,除了有強韌的附著性之外,更可以應用於各種不同的物質材料以及生醫裝置上。我們也透過相關的生物測試,證實此鍍膜技術在生醫領域上的應用。最後,透過表面能量的改變,讓聚對二甲苯高分子鍍膜具備選擇性表面改質的特性。
在這篇研究中,一開始我們使用了功能性聚對二甲苯高分子作為作為鍍膜,設計具有各種生醫功能的材料。研究的材料除了平面的基材外,也使用了立體結構的骨釘、骨板。這些材料進行了熱穩定測試以及機械強度測試,來證明以聚對二甲苯高分子作為生醫材料鍍膜的穩定特性。更進一步的,透過在鍍膜表面修飾蛋白質分子,給予這些材料良好的生物相容性。這些具有不同尾端的蛋白質分子,在表面造成了不同的特性,可以用來控制蛋白質貼附及細胞的吸附。透過上述的鍍膜技術應用於生醫材料,除了擁有強韌的物理特性及穩定性,更是一個很好的界面,在生物環境中控制不同的生物反應。
在了解優異的表面物理特性後,進一步的,我們透過由下而上 (bottom-up) 的表面圖樣 (patterning) 技術,發揮聚對二甲苯高分子在表面改質精準度上的的優點。然而在過去,這樣的技術受限於基材的選擇。在這篇研究的第二部分,我們研究了一個可以被廣泛運用的技術,讓聚對二甲苯高分子可以選擇性的層積在表面上。在進行化學氣相層積的過程中,透過電場在基材的表面提供高能量,成功的抑制聚對二甲苯高分子在特定位置的層積。這樣子的技術,克服了過去在基材以及官能基上的限制,為聚對二甲苯高分子在由下而上選擇性表面改質上,提供了更廣泛的應用。
zh_TW
dc.description.abstractPoly-para-xylylene coatings prepared by chemical vapor deposition can tailor surface properties through specific conjugation reactions, create effective biological functions, and provide selective surface modification. The coating technology gives a robust adherent property to a variety of substrate materials, allowing for facile and versatile application, as well as contributing a precise selective surface modification in next-generation implantable devices, cellular assays, tissue engineering, and regenerative medicine applications.
In this present study, we have used functionalized poly-para-xylylene polymers as coatings for the design of biological functions on various substrates. A thermal stability test against elevated temperature was used to test these coatings on selected substrates, and mechanical stability against harsh scratch test was also tested on flat substrates as well as on a bone plate/screw device. Furthermore, biofunctional activities are performed via immobilization of PEG and functional peptides based on specific conjugation using functional sites of the coatings. Tailored surface functions are created using these coatings as a result of their antifouling properties and ability to control cell attachment. The coatings reported herein provide (i) robust coating stability on a wide range of substrate materials that are commonly used in biomedical applications and (ii) designable interfaces to mimic biological environments for controlled biological responses.
After the important interface material of poly-para-xylylenes has been demonstrated to be a robust tool to modify material surfaces to impart precise surface properties, with the bottom-up patterning approach, poly-para-xylylenes coatings provides intrinsic advantages associated with unlimited resolution but is limited by the materials available for selection. A general and simple approach towards the selective deposition of poly-para-xylylenes is introduced in this research. The chemical vapour deposition (CVD) of poly-para-xylylenes is inhibited on the high-energy surfaces of electrically charged conducting substrates. This technology provides an approach to selectively deposit poly-para-xylylenes irrespective of the substituted functionality and to pattern these polymer thin films from the bottom up.
en
dc.description.provenanceMade available in DSpace on 2021-05-13T08:37:30Z (GMT). No. of bitstreams: 1
ntu-105-R03549003-1.pdf: 2840351 bytes, checksum: d1c8deb6de941f357863de784ded34d1 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents致謝 I
摘要 II
Abstract IV
Content VI
List of Tables X
List of Figures XI
Chapter 1 Introduction 1
1.1 Biomedical Material Application 1
1.2 Surface Modification Approach 3
1.3 Functionalized Poly-para-xylylenes 4
1.4 Research Motivation and Specific Aims 6
Chapter 2 Materials and Methods 8
2.1 Experimental Instrument and Consumable Materials 8
2.1.1 Experimental Instrument 8
2.1.2 Consumable Materials 8
2.2 Synthesis of poly-para-xylylenes 10
2.2.1 CVD Polymerizations 10
2.2.2 Poly(4-vinyl-p-xylylene-co-p-xylylene): PPX-alkene 12
2.2.3 Poly(4-N-maleimi-domethyl-p-xylylene)-co-(p-xylylene): PPX-maleimide 12
2.2.4 Poly(dichloro-p-xylylene)-co-(p-xylylene): PPX-C 13
2.2.5 Poly(4-formyl-p-xylylene)-co-(p-xylylene): PPX-aldehyde 13
2.2.6 Poly(4-trifluoroacetyl-p-xylylene)-co-(p-xylylene): PPX-TFA 14
2.2.7 Poly(4-aminomethyl-p-xylylene)-co-(p-xylylene): PPX-amine 14
2.3 Surface Characterizations 15
2.3.1 Infrared reflection absorption spectroscopy Characterizations 15
2.3.2 Scanning Electron Microscope 15
2.3.3 Energy Dispersive X-ray Spectroscopy 15
2.3.4 Cross-cut Tape Adhesion Test 16
2.3.5 Bone Plate/Screw Device Adhesion Test 16
2.4 Surface Modifications 17
2.4.1 Bioconjugation Reactions 17
2.4.2 Quartz Crystal Microbalance Analysis 18
2.4.3 Cell Culture and MTT Assays 19
2.4.4 Immobilization 20
2.5 Sticking Coefficient 21
Chapter 3 Physical Properties 23
3.1 Coating Stability 23
3.1.1 CVD Polymerization 23
3.1.2 Adhesion Property 24
3.1.3 IRRAS Characterizations 25
3.1.4 Thermal Stability 26
3.1.5 Adherent Property on Bone Plate/Screw Device 27
3.2 Protein Adsorption 28
3.2.1 Bioconjugation of CREDV Peptide 28
3.2.2 QCM analysis 28
3.3 Cell Viability 31
3.3.1 Immobilization of the CREDV Peptide via Click Reaction 31
3.3.2 MTT Reduction Assay 31
Chapter 4 Selective Deposition 41
4.1 Surface Inhibition 41
4.2 Selective Deposition Thickness 44
4.2.1 Maximum Deposition Thickness with Varying Charging Intensities 44
4.2.2 Maximum Deposition Thickness with Varying Deposition Rates 44
4.3 Patterned Substrates 46
Chapter 5 Conclusions 51
5.1 Conclusions 51
5.2 Future Works 53
Reference 54
Appendix 63
口試提問 63
dc.language.isoen
dc.title功能性聚對二甲苯之物理特性及鍍膜基材選擇性zh_TW
dc.titlePhysical Properties and Selective Deposition of Functionalized Poly-para-xylylenesen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.coadvisor陳賢燁(Hsien-Yeh Chen)
dc.contributor.oralexamcommittee游佳欣(Jiashing Yu),趙玲(Ling Chao)
dc.subject.keyword化學氣相層積,聚對二甲苯,鍍膜穩定性,導電表面,選擇性化學氣相層積,表面圖樣,表面改質,zh_TW
dc.subject.keywordchemical vapor deposition,poly-para-xylylene,coating stability,conducting surface,selective CVD,surface pattern,surface modification,en
dc.relation.page65
dc.identifier.doi10.6342/NTU201600970
dc.rights.note同意授權(全球公開)
dc.date.accepted2016-07-27
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf2.77 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved