請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38480完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭斯彥 | |
| dc.contributor.author | Han-Wei Wang | en |
| dc.contributor.author | 王瀚緯 | zh_TW |
| dc.date.accessioned | 2021-06-13T16:34:50Z | - |
| dc.date.available | 2005-07-15 | |
| dc.date.copyright | 2005-07-15 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-08 | |
| dc.identifier.citation | [1] H. W. Wang, I. M. Tsai, and S. Y. Kuo, ”A Circuit Approach for Implementing Quantum Memory,” in Proceedings of the 2004 IEEE Conference on Nanotechnology (IEEE-NANO), August 2004.
[2] H. W. Wang, I. M. Tsai, C. N. Chung, and S. Y. Kuo, ”A Scheme to Enhance the Error-Correcting Capability of Encoded Quantum Information,”in Proceedings of the 2005 European Conference on Circuit Theory and Design (ECCTD), 2005. [3] H.W.Wang, I. M. Tsai, and S. Y. Kuo, ”Protocol and Applications for Sharing Quantum Private Keys,” in Proceedings of the 2005 IEEE International Carnahan Conference On Security Technology (ICCST), 2005. [4] A. Einstein, B. Podolsky and N. Rosen, in Phys. Rev., 47, 777, (1935). [5] Charles Bennett and Peter W. Shor, ”Quantum Information Theory,” in IEEE Trans. Info. Theory, 44, 2724, 1998. [6] R.M. Davis, ”The Data Encryption Standard in Perspective,” in IEEE Communications Society Magazine, November 1978, pp. 5-9. [7] Joan Daemen and Vincent Rijmen, ”The Design of Rijndael: AES - The Advanced Encryption Standard (Information Security and Cryptography),” in Springer Verlag, 15 February, 2002. [8] Ron Rivest, Adi Shamir and Len Adleman, ”RSA algorithm,” 1978. [9] P. Shor, ”Algorithms for quantum computation: discrete logarithms and factoring,” in Proc. of the 35th Annual IEEE Symposium on the Foundations of Computer Science, 1994, pp. 124-134. [10] L. Grover, ”A fast quantum mechanical algorithm for database search,” in Proc. of the 28th Annual ACM Symposium on the Theory of Computing, 1996, pp. 212-219. [11] R. Rivest, A. Shamir, and L. Adleman, ”A method for obtaining digital signatures and public-key cryptosystems,” in Communications of the ACM, vol. (2) 21, pp. 120-126 (1978). [12] W. Diffie, and M. E. Hellman, ”Multiuser Cryptogrphic Techniques,” in Proceeding of AFIPS National Computer Conference, pp. 644-654 (1976). [13] David Deutsch, ”Quantum Theory, the Church-Turing Principle and the Universal Quantum Computer,” in Proc. of Royal Society London A, 400:97-117, 1985. [14] LK Grover, ”Quantum Mechanics Helps in Searching for a Needle in a Haystack,” in Phys. Rev. Lett., 79, p.325, 1997. [15] P. Mohanty and R. A. Webb, ”Decoherence and quantum fluctuations,” in Phys. Rev. B, 55, R13452, 1997. [16] P.W. Shor, ”Scheme for Reducing Decoherence in Quantum Computer Memory,” in Phys. Rev. A, 52, 2493, 1995. [17] A. M. Steane, ”Error Correcting Codes in Quantum Theory,” in Phys. Rev. Lett., 77, 793, 1996. [18] E. Knill and R. Laflamme, ”Theory of Quantum Error-Correcting Codes,”in Phys. Rev. A, 55, 900, 1997 [19] D.A.L., I.L.Chuang and K.B.Whaley, ”Decoherence-Free Subspaces for Quantum Computation,” in Phys. Rev. Lett., 81, 2594 , 1998. [20] D.A.L. and L.A. Wu, ”Reducing Constraints on Quantum Computer Design by Encoded Selective Recoupling,” in Phys. Rev. Lett., 88, 017905, 2002. [21] P. Tombesi, D. Vitali, ”Physical realization of an environment with squeezed quantum fluctuations via QND-mediated feedback,” in Phys. Rev. A, 50, 4253, 1994. [22] D. Vitali, P. Tombesi, and G.J. Milburn, ”Quantum-state protection in cavities,” in Phys. Rev. A, 57, 4930-4944 , 1998. [23] D. Vitali and P. Tombesi, ”Using parity kicks for decoherence control,” in Phys. Rev. A, 59, 4178-4186, 1999. [24] L.A. Wu and D.A.L., ”Creating Decoherence-Free Subspaces Using Strong and Fast Pulses,” in Phys. Rev. Lett., 88, 207902, 2002. [25] D.A.L., D.Bacon and K.B. Whaley, ”Concatenating Decoherence-Free Subspaces and Quantum Error Correcting Codes,” in Phys. Rev. Lett., 82, 4556, 1999. [26] M.S. Byrd and D.A.L., ”Comprehensive Encoding and Decoupling Solution to Problems of Decoherence and Design in Solid-State Quantum Computing,” in Phys. Rev. Lett., 89, 047901, 2002. [27] F. Vatan, V.R. Raichowdry and M. Anantram, ”Spatially Correlated Qubit Errors and Burst-Correcting Quantum Codes,” in IEEE Transactions on Information Theory, Vol. 45, pp. 1703-1708, 1999. [28] M. Grassl and T. Beth, ”Cyclic quantum error-correcting codes and quantum shift registers,” in Proceedings of the Royal Society London A, 456, pp. 2689- 2706, 2000. [29] Chau, H. F., ”Quantum convolutional codes,” in Physical Review A, 58, 905-909, 1998. [30] A. R. Calderbank, P.W.Shor, ”Good quantum error-correcting codes exist,”in Physical Review A, 54(2):1098-1105, August 1996. [31] Markus Grassl, Willi Geiselmann, Thomas Beth, ”Quantum Reed-Solomon Codes,” in AAECC, 1999: 231-244. 1998. [32] C. Bennett, ”Quantum cryptography using any two nonorthogonal states,”in Physical Review Letters, vol. 68, no. 21, pp. 3121 - 2124. [33] C. Bennett and G. Brassard. ”Quantum Cryptography: Public Key Distribution and Coin Tossing,” in Proceedings of IEEE International Conference on Computers Systems and Signal Processing, December 1984, pp. 175-179. [34] Barnett, S. M., Huttner, B. and Phoenix, S. J. D., ”Eavesdropping strategies and rejected-data protocols in quantum cryptography,” in Journal of Modern Optics, vol. 40, no. 12, December 1993, pp. 2501 - 2513. [35] Ekert, A. K., Huttner, B., Palma, G. M. and Peres, A., ”Eavesdropping on quantum cryptosystems,” in Physical Review A, 2000. [36] Gottesman and Lo, ”From quantum cheating to quantum security,” in Physics Today, Nov. 2000, p. 22. [37] Bennett, C. H., ”Quantum cryptography using any two nonorthogonal states,” in Physical Review Letters, vol. 68, no. 21, 25 May 1992, pp. 3121 - 2124. [38] Ekert, A. K., ”Quantum cryptography based on Bell’s theorem,” in Physical Review Letters, vol. 67, no. 6, 5 August 1991, pp. 661 - 663. [39] Bennett, C. H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A. and Wootters, W. K., ”Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” in Physical Review Letters, vol. 70, 29 March 1993, pp. 1895 - 1899. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38480 | - |
| dc.description.abstract | 身處於資訊爆炸的時代,資訊交換的安全性與資料的可靠度也越來越受到重視。然而現今所使用一般的傳統加密方式,能使用量子電腦或處理量強大的電腦來破解其加密,因此我們必須尋找更安全的方法,以確保達到資訊安全的目的。
這篇論文提出一套方法,利用量子計算中特殊的物理性質,有別於一般傳統方法所沒有的特性,來建立安全與可靠的量子資訊傳輸系統,並擁有一般傳統裝置難以真正達到的資訊安全。 但量子系統仍然有其在實作上的限制,例如qubit decoherence的問題,在第二章[1]會討論並提出可能的解決方案;另外qubit傳送過程中有可能會受到外界干擾,導致其量子狀態改變,第三章[2]會討論使用quantum error-correcting code來解決;第四章[3]提出在除去這些量子系統實作上的限制後,如何使用量子技術來安全的傳送訊息。 | zh_TW |
| dc.description.abstract | Living in an age of information explosion, the security and reliability of information exchange is getting more and more important. However, a quantum computer or a powerful computer can be used to decrypt the classical cryptographic techniques. As a result, we have to find a method with better security and relibility for information exchange.
This thesis proposes a flow to build a secure and reliable quantum system for information transmission, using the particular physical properties which are very different from the classical method, and is capable of the information security and reliability that classical world is hard to reach. Quantum system still have its limitation on the physical implementation. For example, the qubit decoherence problem, we talk about it and propose a possible solution in chapter two [1]. And the alteration of quantum state caused by the outside interference of qubits during qubits transmission, the quantum error-correcting code solution is to be discussed in chapter three [2].After removing of these physical implementation limitations, the quantum algorithm of secure and reliable information transmission is proposed in chapter four [3]. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T16:34:50Z (GMT). No. of bitstreams: 1 ntu-94-R92921080-1.pdf: 2193475 bytes, checksum: fbcafe3450000fe66bc6f3b1ad28867e (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | 1 Introduction 10
1.1 Preliminaries on quantum bit 10 1.2 Advantage of quantum device 12 1.3 Structure of the thesis 14 2 Qubit Decoherence Avoidance 16 2.1 Methods of avoiding decoherence 17 2.2 Maintaining the quantum state with our circuit 18 2.3 Circuit design 18 2.3.1 The circuits for eigenstates 18 2.3.2 The circuits for superpositions 20 2.4 Analysis 21 2.5 Applications 21 3 Transmission Interference Elimination 23 3.1 Quantum communication model 24 3.2 Channel coding scheme 25 3.2.1 A simple encoder and decoder 25 3.2.2 Old transmission model and drawbacks 26 3.3 Time-spreading transmission model 27 3.3.1 Encoding and decoding 28 3.3.2 Shifter and delay unit 29 3.3.3 Analysis 30 4 Secure Information Sharing 31 4.1 The protocol 32 4.2 Example 35 4.3 Applications 37 4.3.1 Classical information transmission 37 4.3.2 Quantum information transmission 38 4.4 Analysis 39 4.4.1 Some possible attacks for Eve 39 4.4.2 Enhancement 40 5 Conclusions 42 References 44 | |
| dc.language.iso | en | |
| dc.subject | 量子 | zh_TW |
| dc.subject | Quantum | en |
| dc.title | 安全可靠的量子資訊傳送系統之研究 | zh_TW |
| dc.title | A Quantum System Approach for
Secure and Reliable Information Transmission | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蔡一鳴,顏嗣鈞,陳英一,雷欽隆 | |
| dc.subject.keyword | 量子, | zh_TW |
| dc.subject.keyword | Quantum, | en |
| dc.relation.page | 47 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-07-08 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 2.14 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
