請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3847完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳尊賢 | |
| dc.contributor.author | Che-Yu Lin | en |
| dc.contributor.author | 林哲郁 | zh_TW |
| dc.date.accessioned | 2021-05-13T08:37:29Z | - |
| dc.date.available | 2017-08-24 | |
| dc.date.available | 2021-05-13T08:37:29Z | - |
| dc.date.copyright | 2016-08-24 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-07-27 | |
| dc.identifier.citation | 中央氣象局。2016。氣候統計資料。http://www.cwb.gov.tw/V7/climate/monthlyMean/Taiwan_tx.htm。
王鑫、李桂華、許玲玉、洪復峰。1986。陽明山國家公園地質及地形景觀。內政部營建署陽明山國家公園管理處報告。 王文祥。1989。台灣北部大屯山之火山地質與核分裂定年研究。國立台灣大學地質研究所碩士論文。 王義仲、許立達、林敏宜、林志欽、黃曜謀。2003。陽明山國家公園之長期生態研究–植被變遷與演替調查。內政部營建署陽明山國家公園管理處委託研究報告。 內政部營建署。1985。陽明山國家公園計畫草案(上冊)。 內政部。2005。陽明山國家公園計畫第二次通盤檢討。陽明山國家公園管理處。 余東峰。1995。面天山火山岩來源土壤之特性、化育與分類。國立台灣大學農業化學研究所碩士論文。 巫宗南。1990。陽明山國家公園之地形分類與其成因。國立台灣大學地理研究所碩士論文。 邱文良、張東柱、楊嘉棟、黃曜謀。2009。陽明山國家公園全區植物多樣性調查–百拉卡公路以南,陽金公路以西地區。內政部營建署陽明山國家公園管理處委託研究報告。 周宗成。1999。磺嘴山地區土壤之特性、化育與分類。國立臺灣大學農業化學研究所碩士論文。 馬以工。1990。陽明山國家公園。內政部營建署。 高政毅。2003。臺灣北部灰燼土與極育土之過渡土壤之化育作用與指標因子。國立臺灣大學農業化學研究所碩士論文。 陳春泉。1979。土壤調查手冊。台灣省農業試驗所。 陳正宏。1989。臺灣之火成岩。經濟部中央地質調查所。 陳肇夏、吳永助。1971。臺灣北部大屯地熱區之火山地質。中國地質學會會刊。18: 59-72。 陳文恭、蔡清彥。1986。陽明山國家公園之氣候。內政部營建署陽明山國家公園管理處報告。 陳培源、楊昭男、王執明。1985。大屯火山群及北部濱海地質簡介。科學教育資料叢書。 陳正宏、劉聰桂、鍾孫霖。1988。陽明山國家公園及鄰近地區火山地質史研究。內政部營建署陽明山國家公園管理處報告。 陳尊賢、蔡呈奇、張學雷、高政毅、賴鴻裕、吳森博。2002。陽明山國家公園之地形土序及其化育作用。行政院國科會生物處委託計畫 (NSC 90-2313-B-002-293)。期末報告。4頁。 陳尊賢、蔡呈奇、張學雷、高政毅。2003。陽明山國家公園之地形土序及其化育作用(2) (2/2)。行政院國科會生物處委託計畫 (計畫編號: NSC-92-2313-B-002-347)。期末報告4頁。 陳俊宏、李玲玲、吳書平、蘇夢淮、李建堂、溫在弘、林楨家、賴進貴。2011。人類活動對陽明山國家公園百拉卡公路以北,陽金公路以西地區資源影響調查期末報告。內政部營建署陽明山國家公園管理處委託研究報告。 許立達、王義仲、李載鳴、林志欽。2008。陽明山國家公園植被變遷研究。內政部營建署陽明山國家公園管理處委託研究報告。 曾廣策、朱雲海、葉德隆。2006。晶體光學及光性礦物學。中國地質大學出版社。 陽明山國家公園管理處。2016。http://www.ymsnp.gov.tw/。 黃增泉、謝長富、楊國楨、湯惟新。1983。陽明山國家公園植物生態景觀資源。內政部營建署陽明山國家公園管理處報告。 黃政恆。1990。七星山與紗帽山火山岩來源土壤之特性、化育與分類。國立臺灣大學農業化學研究所碩士論文。 黃政恆、陳尊賢。1990。七星山地區兩個火山灰土壤之特性、化育與分類。中國農業化學會誌,28: 135-147。 黃政恆、陳尊賢。1991。臺灣地區具有烏黑披被層火山灰土壤之特性與黏土礦物。中國農業化學會誌,29(4): 415-426。 黃政恆、陳尊賢。1992。七星山東北側火山灰土壤之性質與分類。中國農業化學會誌,30(2): 216-228。 黃政恆、陳尊賢、王明果。1993。大屯山東北側火山灰土壤的性質與黏土礦物。中國農業化學會誌,31: 325-339。 黃政恆、陳尊賢、王明果。1994。大屯山與面天山間火山熔岩母質來源土壤的性質與分類。中國農業化學會誌,32(3): 294-308。 黃政恆。1995。化育自火山熔岩之土壤中的鋁鐵腐植質複合物特性。中國農業化學會誌,33(4): 424-435。 經濟部。1975。台灣地質概論/台灣地質圖說明書。 蔡呈奇。2002。應用地域分析與地理資訊系統繪製土壤圖:以臺灣北部火山灰土壤為例。國立臺灣大學農業化學研究所博士論文。 蔡呈奇、陳尊賢、黃政恆、張瑀芳、李家興、蘇紹瑋、黃正介、崔君至、廖健利。2008。陽明山國家公園全區土壤分析調查。內政部營建署陽明山國家公園管理處報告。 鄭亦均。2014。兩個不同風化時間的地形序列中火山土壤特性比較。國立臺灣大學農業化學研究所碩士論文。 鄧國雄。1988。陽明山國家公園之地形研究。內政部營建署陽明山國家公園管理處報告。 Andriesse, J. P. 1978. A study into the mobility of iron in podzolized Serawak upland soils by means of selective iron extractions. Neth. J. Agric. Sci. 27: 1-12. Asio, V. B and Z. S. Chen. 1998. Study of andesite weathering in northern Taiwan using micromorphological approaches. Taiwan J. For. Sci. 13(4): 259-269. Bascomb, C. L. 1968. Distribution of pyrophosphate-extractable iron and organic carbon in soils of various groups. J. Soil Sci. 19: 251-267. Blake, D. F., D. L. Bish, R. V. Morris, R. T. Downs, A. H. Treiman, S. M. Morrison, S. J. Chipera, D. W. Ming, A. S. Yen, D. T. Vaniman, J. Grotzinger, J. A. Crisp, C. N. Achilles, E. B. Rampe, T. F. Bristow, P. C. Sarrazin, J. D. Farmer, D. J. Des Marais, E. M. Stolper, J. M. Morookian, M. A. Wilson, N. Spanovich, R. C. Anderson, and the MSL Science Team. 2013. Mineralogy and Elemental Composition of Wind Drift Soil at Rocknest, Gale Carter. LPS XLIV. Abstract. Blake, G. R., and K. H. Hartge. 1986. Bulk density. pp. 363-375. In A. Klute (ed.). Methods of soil analysis. Part 1. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI. Blakemore, L. C., P. L. Searle, and B.K. Daly. 1981. Soil Bureau, Laboratory methods: A. Methods for chemical analysis of soils. Sci. Rep. 10A. Revised ed. New Zealand Soil Bureau, Lower Hutt, New Zealand. Blume, H. P., and U. Schwertmann. 1969. Genetic evaluation of profile distribution of aluminuim, iron and manganese oxides. Soil Sci. Soc. Amer. Proc. 33: 438-444. Bullock, P., N. Fedoroff, A. Jongerius, G. Stoops, and T. Tursina. 1985. Handbook for soil thin section description. Waine Research Publications, Wolverhamption, U. K. Burt, R., and Soil Survey Staff. 2014. Soil Survey Laboratory Methods Manual. Soil Survey Investigations Report 42, Version 5.0. U.S. Department of Agriculture, Natural Resources Conservation Service, National Soil Survey Center. Cady, J. G., L. P. Wilding, and L. R. Drees. 1986. Petrographic microscope techniques. pp. 185-218. In A. Klute (ed.). Methods of soil analysis. Part 1. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI. Campbell, A. S., and U. Schwertmann. 1985. Evaluation of selective dissolution extractants in soil chemistry and mineralogy by differential X-ray diffraction. Clay Miner. 20: 515-519. Caner, L., G. Bourgeon, F. Toutain, and A. J. Herbillon. 2000. Characteristics of non-allophanic Andisols derived from low-activity clay regoliths in the Nilgiri Hills (Southern India). Europ. J. Soil Sci. 51: 553-563. Caner, L., S. Petit, E. Joussein, E. Fritsch, and A. J. Herbillon. 2011. Accumulation of organo-metallic complexes in laterites and the formation of Aluandic Andosols in the NilgiriHills (southern India): similarities and differences with Umbric Podzols. Europ. J. Soil Sci. 62: 754-764. Chartres, C. J., and C. F. Pain. 1984. A climosequence of soils on Late Quaternary volcanic ash in highland Papua New Guinea. Geoderma 32: 131-155. Chen, C. H. 1975. Petrological and chemistry study of volcanic rocks from Tatun Volcano Group. Proc. Soc. China 18: 59-72. Chen, C. H. 1978b. Petrochemistry and origin of Pleistocene volcanic rocks from northern Taiwan. Bull. Volcano. 41: 513-528. Chen, C. H. 1983. The geochemical evolution of Pleistocene absarokite, shoshonite and high-alumina basalt in northern Taiwan. Mem. Geol. Soc. China 5: 85-96. Chen, Z. S., and J. H. Huang. 1994. Soil properties, clay mineralogy, and genesis of non-allophanic and allophanic Andisols in Taiwan. p. 327. In Agron. Abstract(1994). This paper was presented at the “Symposium of volcanic ash soils” of 1994 Annual Meeting of ASA-SSSA-CSSA, on Nov. 13-18, 1994, Seattle, Washington, USA. Chen, Z. S., T.C. Tsou, V. B. Asio, and C. C. Tsai. 2001. Genesis of Inceptisols on a volcanic landscape in Taiwan. Soil Sci. 166: 255-266. Chen, Z. S., V. B. Asio, and D. F. Yi. 1999. Characteristics and genesis of volcanic soils along a toposequence under a subtropical climate in Taiwan. Soil Sci. 164: 510-525. Chen, Z. S., Z. Y. Hseu, and C. C. Tsai. 2015. The soil of Taiwan. Springer book Publisher. (In Press) Childs, C. W. 1985. Towards understanding soil mineralogy. II. Notes on ferrihydrite. Laboratory Report CM7, Soil Bureau, Lower Hutt, New Zealand. Chuang, T. Y. 1960. Preliminary notes on the vegetation and flora of Mt. Ta-tun, Taipei. I. Vegetation. Bot. Bull. Acad. Sinica 1: 77-85. Crews, T.E., K. Kitayama, J. H. Fownes, R. H. Riley, D. A. Herbert, D. Mueller- Dombois, and P. M. Vitousek. 1995. Changes in soil phosphorus fractions and ecosystem dynamics across a long chronosequence in Hawaii. Ecology 76: 1407-1424. Dahlgren, R. A. 1994. Quantification of allophane and imogolite. pp. 430-451. In Amonette, J.E., Zelazny, L.W. (eds.). Quantitative Methods in Soil Mineralogy. SSSA Inc., Madison, WI. Dahlgren, R. A., and F. C. Ugolini. 1989. Effects of tephra addition on soil processes in Spodosols in the Cascade Range, Washington, U.S.A. Geoderma 45: 331-355. Duchaufour, P. 1984. Pedologie. Masson, Paris. Dudas, M. J., and M. E. Harward. 1975. Inherited and detrital 2:1 type phyllosilicates in soils developed from Mazama ash. Soil Sci. Soc. Am. Proc. 39: 571-577. FAO/Unesco. 1974. Soil Map of the World, 1 : 5,000,000. Vol. 1, legend. Unesco-Paris. Farmer, V. C., A. R. Fraser, and J. M. Tait. 1979. Characterization of the chemical structures of natural and synthetic aluminosilicate gels and sols by infrared spectroscopy. Geochim. Cosmochim. Acta. 43: 1417-1420. Farmer, V. C., and J. D. Russell. 1990. The structure and genesis of allophanes and imogolite: their distribution in non-volcanic soils. In 'Soil Colloids and their Associations in Soil Aggregates'. Proc. NATO Advanced Studies Workshop, Ghent, 1985. (Plenum: New York.) Gardner, W. H. 1986. Water content. pp. 493-544. In A. Klute et al. (eds.). Methods of soil analysis. Part 1. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI. Gebhardt, H., and N. T. Coleman. 1974. Anion adsorption by allophanic tropical soils: Ⅲ. Phosphate adsorption. Soil Sci. Soc. Am. Proc. 30: 263-267. Gee, G. W. and J. W. Bauder. 1986. Particle-size analysis. pp. 383-411. In A. Klute (ed.). Methods of soil analysis. Part 1. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI. GÉRARD, M., S. CAQUINEAU, J. PINHEIRO, and G. STOOPS. 2007. Weathering and allophane neoformation in soils developed on volcanic ash in the Azores. Europ. J. Soil Sci. 58: 496-515. Gracia-Rodeja, E., B. M. Silva, and F. Macias. 1987. Andosols developed from non-volcanic materials in Galicia, NW Spain. J. Soil Sci. 38: 573-591. Gunjigake, N., and K. Wada. 1981. Effects of phosphorus concentration and pH on phosphate retention by active aluminum and iron of ando soils. Soil Sci. 132: 347-352. Hetier, J. M., N. Yoshinaga, and F. Weber. 1977. Formation of clay minerals in Andosoils under temperature climate. Clay Minerals. 12: 299-307. Hughes, R. E., D. M. Moore, and H. D. Glass. 1994. Qualitative and quantitative analysis of clay minerals in soils. pp. 330-359. In J. E. Amonette and L.W. Zelazny (eds.). Quantitative methods in soil mineralogy. Soil Sci. Soc. Am. Misc. Publ. SSSA, Madison, WI. Hunter, C. R., B. E. Frazier, and A. J. Busacca. 1987. Lytell series: a nonvolcanic Andisols. Soil Sci. Soc. Am. J. 51: 376-383. ICOMAND. 1983. Circular Letter no. 5. Int. Comm. Classif. Of Andisols, c/o Soil Bureau, Lower Hutt, New Zealand. ICOMAND. 1988. Circular Letter no. 10. Int. Comm. Classif. Of Andisols, c/o Soil Bureau, Lower Hutt, New Zealand. Inoue, K. 1981. Implications of eolian dusts to 14Å minerals in the volcanic ash soils in Japan. Pedologist 25: 97-118 (in Japanese). Inoue, K., and T. Naruse. 1990. Asian long-range eolian dust deposited on soils and paleosols along the Japan Sea coast. Quat. Res. 29: 209-222 (in Japanese, with English abstract). Ivanov, A., S. Shoba, P. Krasilnikov. 2014. A pedogeographical view of volcanic soils under cold humid conditions: the Commander Islands. Geoderma 235-236: 48-58. Jenny, H. 1941. Factors of soil formation. McGraw-Hill, New York. Jongmans, A. G., F. van Oort, A. Nieuwenhuyse, P. Buurman, A. M. Jaunet, and J. D. J. van Doesburg. 1994. Inheritance of 2:1 phyllosilicates in Costa Rican Andisols. Soil Sci. Soc. Am. J. 58: 494-501. Jongmans, A. G., P. Verburg, A. Nieuwenhuyse, and F. van Oort. 1995. Allophane, imogolite, and gibbsite in coatings in a Costa Rican Andisol. Geoderma 64: 327-342. Juan, V. C., L. C. Hsu, and T. S. Yao. 1963. High-alumina basalt from northern Taiwan. Proc. Geol. Soc. China 6: 67-71. Juang, W. S. 1993. Diversity and origin of Quaternary basaltic magma series in northern Taiwan. Bull. Natl. Mus. Nat. Sci. 4: 125-166. Kahle, M., M. Kleber, and R. Jahn. 2002. Review of XRD-based quantitative analyses of clay minerals in soils: The suitability of mineral intensity factors. Geoderma 109: 191-205. Kawasaki, H., and S. Aomine. 1966. So-called 14 A clay minerals in some ando soils. Soil Sci. Plant Nutr. 12: 18-24. Kirkman, J. H., and W. J. McHardy. 1980. A comparative study of the morphology, chemical composition and weathering of rhyolitic and andesitic glass. Clay Miner. 15: 165-73. Klute, A. 1986. Water retention. pp. 636-660. In A. Klute (ed.). Methods of soil analysis. Part 1. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI. Kondo, Y., T. Fujitani, Y. Katsui, and K. Niida. 1979. Nature of the 1977–1978 volcanic ash from Usu volcano, Hokkaido, Japan. Kanzan 24: 223-238 (in Japanese). Kubiena, W. L. 1938. Micropedology. Collegiate Press, Ames, IA. Lair, G. J., F. Zehetner, M. Hrachowitz, N. Franz, F. J. Maringer, and M. H. Gerzabek. 2009. Dating of soil layers in a young floodplain using iron oxide crystallinity. Quat. Geochronol. 4: 260-266. LaManna, J. M. and F. C. Ugolini. 1987. Trioctahedral vermiculite in a 1980 pyroclastic flow, MT. ST. Helens, Washington. Soil Sci. 143: 162-167. Leamy, M. L. 1984. Andisols of the world. 13: 368-387. In Congresco International de Suelos Volcanicos. Universida de la Laguna Secretariado de Publicaciones, serie informes. Lin, C. P., J. P. Huang, Y. H. Lee, M. Y. Chen. 2009. Phylogenetic position of a threatened stag beetle, Lucanus datunensis (Coleoptera: Lucanidae) in Taiwan and implications for conservation. Conserv. Genet. 12(1): 337-341. Malucelli, F., F. Terribile, and C. Colombo. 1999. Minerology, micromorphology and chemical analysis of Andosols on the island of São Miguel (Azores). Geoderma 88: 73-98. Martini, J. A., and J. A. Palencia. 1975. Soils derived from volcanic ash in Central America: 1. Andepts . Soil Sci. 120: 278-287. Masui, J., S. Shoji, and N. Uchiyama. 1966. Clay mineral properties of volcanic ash soils in the northeastern part of Japan. Tohoku. J. Agr. Res. 17: 17-36. McKeague, J. A., and J. H. Day. 1966. Dithionite and oxalate-extractable Fe and Al as aids in differentiating various classes of soils. Can. J. Soil Sci. 46: 13-22. McLean, E. O. 1982. Soil pH and lime requirement. pp. 199-244. In A. L. Page et al. (eds.). Methods of soil analysis. Part 2. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI. Mehra, O. P., and M. L. Jackson, 1960. Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clays Clay Miner. 7: 317-327 Meyer, J. D. 1971. Glass crust on intratelluric phenocrysts in volcanic ash as a measure of eruptive violence. Bull. Volcanologique 34: 358-368. Mizota, C. 1976. Relationships between the primary mineral and the clay mineral compositions of some recent Andosols. Soil Sci. Plant Nutr. 22: 257-268. Mizota, C. 1982. Tropospheric origin of quartz in Ando soils and Red-Yellow soils on basalts, Japan. Soil Sci. Plant Nutr. 28: 517-522. Mizota, C. 1983. Eolian origin of the micaceous minerals in an ando soil from Kitakami, Japan. Soil Sci. Plant Nutr. 29: 379-382. Mizota, C., and K. Inoue. 1988. Eolian dust contribution to soil development on volcanic ashes in Japan. p. 547-557. In D. I. Kinloch, S. Shoji, F. H. Beinroth and H. Eswaran (eds.). Proc of the 9th Int. Soil Classification Workshop, Japan. 20 July to 1 August, 1987. Publ. by Jap. Committee for 9th Int. Soil Classification Workshop, for the Soil Management Support Services, Wingshton, D. C., U.S.A. Mizota, C., and L. P. van Reeuwijk. 1989. Clay Mineralogy and Chemistry of Soils formed in Volcanic Material in Diverse Climatic Regions. Soil monograph 2, ISRIC, Wageningen, The Netherlands. Mizota, C., and Y. Takahashi. 1982. Eolian origin of quartz and mica in soils developed on basalts in northwestern Kyushu and San-in, Japan. Soil Sci. Plant Nutr. 28: 369-378. Moore, D. M., and R. C. Reynolds, Jr. 1997. X-ray diffraction and the identification and analysis of clay minerals. Oxford Univ. Press. New York, NY. Moustakas, N. K., and F. Georgoulias. 2005. Soils developed on volcanic materials in the Island of Thera, Greece. Geoderma 129: 125-138. Nagatsuka, S. 1972. Studies on genesis and classification of soils in warm-temperate region of Southwest Japan: part 3. Some features in distribution and mode of existence of free iron. Soil Sci. Plant Nutri. 18: 147-154. Nanzyo, M. 2003. Unique properties of volcanic ash soils. Glob. Environ. Res. 6: 99-112. Nelson, D. W., and L. E. Sommers. 1982. Total carbon, OC, and organic matter. pp. 539-577. In A. L. Page et al. (eds.). Methods of Soil Analysis. Part 2. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI. Nieuwenhuyse, A., P. S. J. Verburg, and A. G. Jongmans. 2000. Mineralogy of a soil chronosequence on andesitic lava in humid tropical Costa Rica. Geoderma 98: 61-82. Nishiue, A., M. Nanzyo, H. Kanno and T. Takahashi. 2014. Properties and classification of volcanic ash soils around Lake Kuwanuma on the eastern footslope of Mt. Funagata in Miyagi prefecture, northeastern Japan. Soil Sci. Plant Nutr. 60: 848-862. Nizeyimana, E., T. J. Bicki, and P. A. Agbu. 1997. An assessment of colloidal constituents and clay mineralogy of soils derived from volcanic materials along a toposequence in Rwanda. Soil Sci. 162: 361-371. Okamura, Y., and K. Wada. 1983. Electric charge characteristics of horizons of ando(B) and red-yellow B soils and weathered pumices. J. Soil Sci. 34: 287-289. Ossaka, J. 1982. Activity of volcanos and clay minerals. Nendo Kagaku. 22: 127-137 (in Japanese). ÖZCAN, S., and H. H. ÖZAYTEKİN. 2011. Soil formation overlying volcanic materials at Mount Erenler, Konya, Turkey. Turk. J. Agric. For. 35: 545-562. Parfitt, R. L. 1990. Allophane in New Zealand-a review. Aust. J. Soil Res. 28: 343-360. Parfitt, R. L., and A. D. Wilson. 1985. Estimation of allophane and halloysite in three sequences of volcanic soils, New Zealand. In: E. Fernandez Caldas and D. H. yaalon (eds.) Volcanic Soils. Catena Suppl. 7: 1-8. Parfitt, R. L., and C. W. Childs. 1988. Estimation of forms of Fe and Al: a review, and analysis of contrasting soils by dissolution and Moessbauer methods. Aust. J. Soil Res. 26: 121-144. Parfitt, R. L., and J. M. Kimble. 1989. Conditions for formation of allophane. Soil Sci. Soc. Am. J. 53: 971-997. Parfitt, R. L., and M. Saigusa. 1985. Allophane and humus-aluminium in Spodosols and Andepts formed from the same volcanic ash beds in New Zealand. Soil Sci. 139: 149-155. Parfitt, R. L., and T. Henmi. 1982. Comparison of an oxalate-extraction method and an infrared spectroscopic method for determining allophane in soil clays. Soil Sci. Plant Nutr. 28: 183-190. Parfitt, R. L., M. Russel, and G. E. Orbell. 1983. Weathering sequence of soils from volcanic ash involving allophane and halloysite. Geoderma 29: 41-57. Parfitt, R. L., R. J. Furkert, and T. Henmi. 1980. Identification and structure of two types of allophane from volcanic ash soils and tephra. Clays Clay Miner. 28: 328-334. Perrott, K. W., B. F. L. Smith, and R. H. E. Inkson. 1976. The reaction of fluoride with soils and soil minerals. J. Soil Sci. 27: 58-67. Pevear, D. R., D. P. Dethier, and D. Frank. 1982. Clay minerals in the 1980 deposits from Mount St. Helens. Clays Clay Miner. 30: 241-252. Ping, C. L., S. Shoji, and T. Ito. 1988. Properties and classification of three volcanic ash-derived pedons from Aleutian islands and Alaska peninsula, Alaska. Soil Sci. Soc. Am. J. 52: 455-462. Rampe, E. B., D. L. Bish, S. J. Chipera, R. V. Morris, C. N. Achilles, D. W. Ming, D. F. Blake, R. C. Anderson, T. F. Bristow, J. A. Crisp, D. J. Des Marais, R. T. Downs, J. D. Farmer, J. M. Morookian, S. M. Morrison, P. Sarrazin, N. Spanovich, E. M. Stolper, A. H. Treiman, D. T. Vaniman, A. S. Yen, and the MSL Science Team. 2013. Detecting Nanophase Weathering Products with CheMin: Reference Intensity Ratios of Allophane, Aluminosilicate Gel, and Ferrihydrite. LPS XLIV. Abstract and Poster. Rasmussen, C., Matsuyama, N., Dahlgren, R.A., Southard, R.J., Brauer, N., 2007. Soil genesis and miner transformation across an environmantal gradient on andesitic lahar. Soil Sci. Soc. Am. J. 71: 225-237. Saigusa, M., S. Shoji, and T. Takahashi. 1980. Plant root growth in acid andisols from northeastern Japan: 2. Exchange acidity Al as a realistic measure of aluminum toxicity potential. Soil Sci. 130: 242-250. Saito, K., and S. Shoji. 1984. Silica adsorption and dissolution properties of andosols from northeastern Japan as related to their noncrystalline clay mineralogical composition. Soil Sci. 138: 341-345. Schwertmann, U. 1985. The effect of pedogenic environments on iron oxide minerals. pp. 171-200. In B. A. Stewart (ed.). Advances in Soil Science, Vol. 1. Springer Verlag, New York. Shoji, S. 1985. Genesis and properties of non-allophanic Andisols in Japan. Applied Clay Sci. 1: 83-88. Shoji, S. 1988. Seperation of melanic and fulvic Andisols. Soil Sci. Plant Nutr. 34: 303-306. Shoji, S., and M. Saigusa. 1977. Amorphous clay materials of Towada ando soils. Soil Sci. Plant Nutr. 23: 437-455. Shoji, S., and T. Ono. 1978. Physical and chemical properties and clay mineralogy of Andosol from Kitakami, Japan. Soil Sci. 126: 297-312. Shoji, S., and Y. Fujiwara, 1984. Active aluminum and iron in the humus horizons of Andosols from northeastern Japan: their forms, properties, and significance in clay weathering. Soil Sci. 137: 216-226. Shoji, S., I. Yamada, and K. Kurashima. 1981. Mobilities and related factors of chemical elements in the topsoils of Andosols in Tohoku, Japan: 2. Chemical and mineralogical compositions of size fractions and factors influencing the mobilities of major chemical elements. Soil Sci. 132: 330-346. Shoji, S., M. Nanzyo, and Dahlgren, R.A. 1993. Volcanic ash soils: genesis, properties and utilization. Developments in Soil Science, vol. 21. Elsevier. Shoji, S., T. Hakamada, and E. Tomioka. 1990a. Properties and classification of selected volcanic ash soil from Abashiri, northern Japan-Transition of Andisols to Mollisols. Soil Sci. Plant Nutr. 36: 409-423. Shoji, S., T. Ito, M. Saigusa, and I. Yamada. 1985. Properties of nonallophanic andosols from Japan. Soil Sci. 140: 264-277. Shoji, S., T. Takahashi, and M. Saigusa. 1987. Clay mineralogical and chemical properties of nonallophanic Andept (Andisols) from Oregon, USA. Soil Sci. Soc. Am. J. 51: 986-990. Shoji, S., T. Takahashi, M. Saigusa, I. Yamada, and F C. Ugolini. 1988a. Properties of Spodosols and Andisols showing climosequential and biosequential relations in S. Hakkoda, N.E. Japan. Soil Sci. 145: 135-150. Shoji, S., T. Takahashi, T. Ito, and C. L. Ping. 1988b. Properties and classification of selected volcanic ash soils from Kenai Peninsula, Alaska. Soil Sci. 145: 396-413. Shoji, S., Y. Fujiwara, I. Yamada, and M. Saigusa. 1982. Chemistry and clay mineralogy of Ando soils, Brown forest soils, and Podzolic soils formed from recent Towada ashes, northern Japan. Soil Sci. 133: 69-86. Simonson, R. W. 1979. Origin of the name “Ando soils”. Geoderma 22: 333-335 Soil Survey Staff. 1974. Soil Taxonomy. A basic system of soil classification for making and interpreting soil surveys. USDA Handbook no. 436. USDA-SCS. U.S. Govt. Printing Office, Wahington, D.C. Soil Survey Staff. 1990. Key to Soil Taxonomy. 4th ed. AID. USDA-SMSS Technical Monograph No. 19, Blacksburg, Virinia. Soil Survey Staff. 1992. Key to Soil Taxonomy. 5th ed. AID. USDA-SMSS Technical Monograph No. 19, Blacksburg, Virinia. Soil Survey Staff. 1993. Soil survey manual. USDA Agric. Handb. 18. U. S. Gov. Print. Office, Washington, DC. Soil Survey Staff. 1999. Keys to Soil Taxonomy: A basic system of soil classification for making and interpreting soil surveys. USDA-Natural Resources Conservation Service, Aggricultural Handbook No. 436, 2nd ed., U.S. Gov. Print. Office,Washington, DC. Soil Survey Staff. 2014. Kellogg Soil Survey Laboratory Methods Manual. Soil Survey Investigations Report No. 42, Version 5.0. R. Burt and Soil Survey Staff (eds.). U.S. Department of Agriculture, Natural Resources Conservation Service. Soil Survey Staff. 2014. Keys to soil taxonomy. 12th ed. USDA–NRCS. Stevens, K. F., and G. C. Vucetich. 1985. Weathering of Upper Quaternary tephras in New Zealand. Part 11. Clays minerals. Chem. Geol. 53: 237-247. Stoops, G. 2003. Guidelines for analysis and description of soil and regolith thin sections. Soil Sci. Soc. Am., Madison, WI. The Third Division of Soils. 1973. Criteria for making soil series and a list of soil series. The first approximation. Nat. Inst. Agr. Res., Japan. Thomas, G.W. 1982. Exchangeable cation. pp. 159-165. In A. L. Page et al. (eds.). Methods of soil analysis. Part 2. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI. Tsai, C. C., and Z. S. Chen. 2011. Volcanic ash soils in Taiwan: Properties, Genesis and Ecology. Nova Science Publishers, Inc. In: Horizons in Earth Science Research. 5: 283-305. Ugolini, F. C. and R. A. Dahlgren. 1991. Weathering environment and occurrence of imogolite/allophane in selected Andisols and Spodosols. Soil Sci. Soc. Am. J. 55: 1166-1171. Ugolini, F. C., R. Minden, H. Dawson, and J. Zachara. 1977. An example of soil processes in the Abies amabilis zone of central Cascades, Washington. Soil Sci. 124: 219-302. Vacca, A., P. Adamo, M. Pigna, and P. Violante. 2003. Genesis of tephra-derived soils from the Roccamonfina Volcano, south central Italy. Soil Sci. Sco. Am. J. 67: 198-207. Vacca, S., G. F. Capra, E. Coppola, M. Rubino, S. Madrau, A. Colella et al. 2009. From andic non-allophanic to non-andic allophanic Inceptisols on alkaline basalt in Mediterranean climate. Geoderma 151: 157-167. Vingiani, S., F. Scarciglia, F. A. Mileti, P. Donato, and F. Terribile. 2014. Occurrence and origin of soils with andic properties in Calabria (southern Italy). Geoderma 232-234: 500-516. Wada, K. 1977. Allophane and imogolite. pp. 603-638 In J. B. Dixon and S. B. Weed (eds.). Minerals in soil environments. SSSA, Madison, WI, USA. Wada, K. 1980. Mineralogical characteristics of Andisols. pp. 87-109. In B. K. G. Theng (ed.). Soils with variable charge. Soil Bureau, Lower Hutt, New Zealand. Wada, K. 1989. Allophane and imogolite. pp. 1051-1087. In J. B. Dixon and S. B. Weed (eds.). Minerals in soil environments. 2nd ed. SSSA, Madison, WI, USA. Wada, K., and N. Gunjigake. 1979. Active aluminum and iron and phosphate adsorption in ando soil. Soil Sci. 128: 331-336. Wada, K., and T. Higashi. 1976. The categories of aluminum and iron-humus complexes in ando soils determined by selective dissolution. J. Soil Sci. 27: 357-368. Wada, K., Y. Kakuto, and H. Ikawa. 1986. Clay minerals, humus complexes and classification of four “Andepts” of Maui. Soil Sci. Soc. Am. J. 50: 1007-1013 Wells, N., and C. W. Childs. 1988. Flow behaviour of allophane and ferrihydrite under shearing forces. Aust. J. Soil Res. 26: 145-152. Wells, N., C. W. Childs, and C. J. Downes. 1977. Silica Springs, Tongariro National Park, New Zealand-analyses of the spring water and characterization of the alumino-silicate deposit. Geochim. Cosmochim. Acta. 41: 1497-1506. Yamada, I., and S. Shoji. 1982. Retention of potassium by volcanic glasses of the topsoils of Andosol in Tohoku, Japan. Soil Sci. 133: 208-212. Yamada, I., and S. Shoji. 1983. Alteration of volcanic glass of recent Towada ash in different soil environments of northeastern Japan. Soil Sci. 135: 316-321. Yerima, B. P. K., L. P. Wilding, F. G. Calhoun, and C. T. Hallmark. 1987. Volcanic ash-influenced Vertisols and associated Mollisols of El Salvador–Physical, chemical, and morphological properties. Soil Sci. Soc. Am. J. 51: 699-708. Yoshinaga, N. 1986. Mineralogical characteristics. II. Clay minerals. pp. 41-56. In K. Wada (ed.). 'Ando Soils in Japan'. Kyushu University Press. Zehetner, F., W. P. Miller, and L. T. West. 2003. Pedogenesis of volcanic ash soils in Andean Ecuador. Soil Sci. Soc. Am. J. 67: 1797-1809. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3847 | - |
| dc.description.abstract | 烘爐山(Honglu Mountain, HL)屬於大屯火山亞群,約在40萬年前停止噴發,為一座由高鋁玄武岩所構成的截頂狀火山錐。由於母質特殊且尚未調查,根據地形土序在該地區山頂(HL-1)、上背坡(HL-2)與下背坡(HL-3)位置選擇土壤樣體,研究其土壤特性、化育作用與分類。土壤剖面呈現棕色,且不具有典型灰燼土具有的黑瘠表育層。研究區域屬亞熱帶氣候,茂盛的植被提供大量有機質來源,而豐富的可交換性鋁增加了土壤酸度,強烈的淋洗作用造成低鹽基飽和度。選擇性化學抽出指出,土壤中的活性鋁主要以鋁‒有機質複合物為主,而鋁英石在酸性環境下不易生成(pH < 5)。微形態特徵顯示樣體無明顯的黏粒洗入現象,再以質地分析結果判斷得知,研究樣體無黏聚層(argillic horizon, Bt),B化育層均為火山灰土壤常見的變育層(cambic horizon, Bw)。礦物分析結果顯示黏土礦物以高嶺石、水鋁氧含量最多,石英次之,方矽石含量最少,HL-2及HL-3有中量的綠泥石及水化層間蛭石,HL-2及HL-3樣體有相對較多的2:1型礦物。研究區域土壤受母質影響為火山灰土化作用,且氣候與時間因素使得化育於火山母質的土壤逐漸脫離火山灰土壤性質,在此轉變的過程有鹽基離子流失、結晶性鐵氧化物變多、無定形物質減少、總體密度上升、黏粒含量變多、高嶺石等黏土礦物的生成等。地形對於本研究區域土壤化育的影響不大,但各樣體間受到坡度、坡向等微地形的影響,因此在物理及化學性質間仍有些許差異。所研究的三個樣體在物理及化學性質上皆未能完全符合美國土壤分類系統中火山灰土壤性質(andic soil properties)之定義,在海拔385–650 m間地形土序上的HL-1及HL-2其亞類為灰燼型低鹽基濕潤弱育土(Andic Dystrudepts),HL-3所受的風化程度最大其亞類為典型低鹽基濕潤弱育土(Typic Dystrudepts),地形土序上的變化不大,皆屬於弱育土(Inceptisols)。 | zh_TW |
| dc.description.abstract | Honglu Mountain belongs to Tatun volcano subgroup with the extinction of eruption approximate 0.4 million years ago. Previous studies have explored the pedogenesis and soil classification in most areas of Yangmingshan national park, but Honglu Mountain is not investigated and only an Al-enriched basalt composite cone in Tatun volcano group. Three soil pedons are selected along a toposequence including summit (HL-1), upper backslope (HL-2), and lower backslope (HL-3) landscape positions. The soil color is brown and the diagnostic epipedon is ochric epipedon for all the studied three pedons. Dense vegetation supplies large amounts of organic matter to the soils in this subtropical climate, but exchangeable cations were leached out of the soils due to the very high rainfall of 4800 mm per year. However, large amounts of exchangeable Al are generated in the soils to increase the soil acidity. The results of selective chemical extractions indicate that the active Al are dominantly formed as Al -humus complexes in the soils. Allophane is not identified in such an acidic condition (pH< 5). The soil micromorphology shows that clay illuviation is unobvious in B horizon and the particle-size analysis indicates that B horizon are cambic horizons (Bw). X-ray diffractometer analysis shows that the mineralogical compositions of the clay fractions are major with kaolinite and gibbsite, minor with quartz, and fewer with cristobalite. The pedogenesis processes of the studied soils are predominant andosolization and subsequent de-andosolization, which forming Inceptisols via the factors of climate and time. This implies the base loss, increases of crystalline iron oxides, bulk density, and clay contents, decreases of non-crystalline materials, and formation of kaolin minerals. The factor of topography did not significantly affect the pedogenesis, while the differences between physical and chemical properties of the three soil pedons can be attributed to micro-topography. The chemical and physical properties of the studied pedons can’t completely meet the criteria of andic soil properties of USDA Soil Taxonomy. The pedon HL-1 and HL-2 can be classified as Andic Dystrudepts, and pedon HL-3 can be classified as Typic Dystrudepts. The studied pedons are all classified as Inceptisols along the toposequence. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-13T08:37:29Z (GMT). No. of bitstreams: 1 ntu-105-R03623020-1.pdf: 7965818 bytes, checksum: 27e8649cf26fc431953b608cc489e061 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 中文摘要 I
英文摘要 II 目 錄 III 圖目錄 VII 表目錄 VI 第一章 前言 1 第二章 前人研究概況 4 第一節、國外火山灰土壤之相關研究 4 一、灰燼土的轉變 4 二、環境因子對灰燼土化育之影響 6 第二節、台灣火山灰土壤之相關研究 7 一、環境因子對園區土壤的性質與分佈 7 二、園區灰燼土轉變之研究 8 第三節、研究區環境概況 11 一、氣候 11 二、植生 14 三、地形 17 四、母質 17 五、時間 19 第三章 材料與方法 25 第一節、土壤樣體之選擇與採樣 25 一、土壤樣體的選擇 25 二、土壤樣體之採樣與描述 25 三、土壤樣品的處理 25 四、微形態觀察所需樣品之採集 29 第二節、土壤分析方法 29 一、物理性質分析 29 二、化學性質分析 30 三、礦物組成份分析 34 四、土壤薄切片之製備與觀察 39 第三節、統計分析 39 第四章 結果與討論 41 第一節、土壤形態特徵 41 一、Honglu Mountain-1 (HL-1)樣體 41 二、Honglu Mountain-2 (HL-2)樣體 43 三、Honglu Mountain-3 (HL-3)樣體 43 第二節、土壤物理性質 46 一、總體密度 46 二、水分含量 49 三、土壤質地 52 第三節、一般土壤化學性質 55 一、pH值 55 二、有機質 59 三、陽離子交換容量、交換性鹽基與可交換性鋁 60 四、磷酸根吸持力 61 第四節、選擇性化學抽出 62 一、CBD試劑之抽出 62 二、酸性草酸銨(Acid oxalate)抽出 64 三、焦磷酸鈉抽出(Sodium pyrophosphate) 68 四、選擇性化學抽出性質之比值意義 68 五、鋁英石的生成與定量 69 第五節、土壤微形態特徵 72 一、HL-1樣體之微形態 73 二、HL-2樣體之微形態 74 三、HL-3樣體之微形態 80 第六節、礦物特徵 80 一、砂粒部分之礦物鑑定 82 二、黏土礦物的鑑定 82 (一) HL-1樣體之黏粒X光繞射分析 86 (二) HL-2樣體之黏粒X光繞射分析 86 (三) HL-3樣體之黏粒X光繞射分析 93 (四)礦物的生成與轉變 97 第七節、土壤化育作用 100 一、地形對研究樣體的影響 100 二、研究區域土壤的轉變 102 三、研究地區與其他大屯火山群地區之比較 103 第八節、土壤分類 104 第五章 結論 111 參考文獻 112 附錄 124 附錄1-1 124 附錄1-2 126 附錄1-3 128 | |
| dc.language.iso | zh-TW | |
| dc.subject | 地形土序 | zh_TW |
| dc.subject | 灰燼土 | zh_TW |
| dc.subject | 弱育土 | zh_TW |
| dc.subject | 土壤化育 | zh_TW |
| dc.subject | 火山灰土壤性質 | zh_TW |
| dc.subject | 玄武岩 | zh_TW |
| dc.subject | 安山岩 | zh_TW |
| dc.subject | 鋁–有機質複合物 | zh_TW |
| dc.subject | Pedogenesis | en |
| dc.subject | Al-humus complexes | en |
| dc.subject | Andisols | en |
| dc.subject | Inceptisols | en |
| dc.subject | Andic soil properties | en |
| dc.subject | Toposequence | en |
| dc.subject | Andesite | en |
| dc.subject | Basalt | en |
| dc.title | 台灣北部烘爐山森林土壤之特性化育與分類 | zh_TW |
| dc.title | Characteristics, Pedogenesis, and Classification of the Forest Soils in Honglu Mountain, Northern Taiwan | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 許正一 | |
| dc.contributor.oralexamcommittee | 黃政恆,蔡呈奇,簡士濠 | |
| dc.subject.keyword | 灰燼土,弱育土,土壤化育,火山灰土壤性質,玄武岩,安山岩,鋁–有機質複合物,地形土序, | zh_TW |
| dc.subject.keyword | Pedogenesis,Andic soil properties,Inceptisols,Andisols,Al-humus complexes,Basalt,Andesite,Toposequence, | en |
| dc.relation.page | 129 | |
| dc.identifier.doi | 10.6342/NTU201601148 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2016-07-28 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農業化學研究所 | zh_TW |
| 顯示於系所單位: | 農業化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf | 7.78 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
