Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38451
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林萬寅(Wann-Yin Lin)
dc.contributor.authorShan - Shan Hoen
dc.contributor.author何姍珊zh_TW
dc.date.accessioned2021-06-13T16:33:58Z-
dc.date.available2011-07-27
dc.date.copyright2011-07-27
dc.date.issued2011
dc.date.submitted2011-07-18
dc.identifier.citation(1) Campbell, A. K. In Chemiluminescence: Principles and Applications in Biology and
Medicine: New York, 1988, pp 19-67.
(2) Roda, A.; Guardigli, M.; Michelini, E.; Mirasoli, M.; Pasini, P. Analytical Chemistry
2003, 75, 462A-470A.
(3) Seitz, W. R.; Neary, M. P. Analytical Chemistry 1974, 46, A188-A200.
(4) Wilson, E. Chemical & Engineering News 1999, 77, 65-65.
(5) Huntress, E. H. S.; Lester N.; Parker, Almon S. Journal of Chemical Education
1934, 11, 142-145.
(6) Douglas A.; Skoog, F. J. H.; Timothy A. Nieman. In Principle of Instrumental
Analysis, 5th ed.; Harcourt Brace college publishers, 1998, pp 355 - 356, 374 - 376.
(7) Yu, C.; Tank, Y.; Han, X.; Zheng, X. Analytical Sciences 2006, 22, 25-28.
(8) Chen, F.; Zhang, Y. X.; Zhang, Z. Chinese Journal of Chemistry 2007, 25, 942-946.
(9) Nalewajko, E.; Wiszowata, A.; Kojło, A. Journal of Pharmaceutical and Biomedical
Analysis 2007, 43, 1673-1681.
(10) He, W. W.; Zhou, X. W.; Lu, J. Q. Journal of Chromatography A 2006, 1131,
289-292.
(11) Xie, T.; Liu, Q.; Shi, Y.; Liu, Q. Journal of Chromatography A 2006, 1109,
317-321.
(12) Kricka, L. J. Analytica Chimica Acta 2003, 500, 279-286.
(13) Li, F. M.; Zhang, C. H.; Guo, X. J.; Feng, W. Y. Biomedical Chromatography 2003,
17, 96-105.
(14) Pistonesi, M. F.; Nezio, M. S. D.; Centurión, M. E.; Palomeque, M. E.; Lista, A. G.;
Band, B. S. F. Talanta 2006, 69, 1265-1268.
(15) Mestre, Y. F.; Zamora, L. L.; Calatayud, J. M. Luminescence 2001, 16, 213-235.
(16) James D. Ingle, j., Stanley R. Crouch; Prentice-Hall International, Inc., 1988, pp
478 - 485.
(17) Albrecht, H. O. Physical Chemistry & Chemical Physics 1928, 136, 321-321.
(18) Robards, K.; Worsfold, P. J. Analytica Chimica Acta 1992, 266,147-173
(19) Roswell DF, White EH (1978) The chemiluminescence of luminol and related
hydrazides. In: Fleischer S, Fleischer B(eds) Methods in enzymology. Academic
Press, London, p 409.
(20) Christophe A. M.; Loïc J. B. Analytical and Bioanalytical Chemistry 2006, 385, 546–554.
(21).Lind, J.; Merenyi, G.; Eriksen, T. E. Journal of the American Chemical Society 1983, 105, 7655.
(22) Merenyi, G.; Lind, J.; Eriksen, T. E. Journal of Bioluminescence and Chemiluminescence 1990, 5, 53.
(23) Evmiridis, N. P. Analyst 1987, 112, 825-829.
(24) Evmiridis, N. P. Analyst 1988, 113, 1051-1056.
(25) Zhang, G. F.; Chen, H. Y. Analytica Chimica Acta 2000, 409, 75-81.
(26) Lin, J. M.; Arakawa, H.; Yamada, M. Analytica Chimica Acta 1998, 371, 171-176.
(27) Fletcher, P.; Andrew, K. N.; Calokerinos, A. C.; Forbes, S.; Worsfold, P. J.
Luminescence 2001, 16, 1-23.
(28) Xu, H.; Duan C. F.; Lai, C. Z.; Lian M.; Zhang1, Z. F.; Liu1, L. J.; Cui1, H.
Luminescence 2006, 21,195-201
(29) Li, Y. H.; Tang, Y. H. ; Yao, H.; Fu, J. M. Luminescence 2003, 18, 313-317.
(30) Zhou, Y. X. N. T.; Li, F.; Zhu, G. Y. Talanta 1999, 48, 313-317.
(31) Lu, C.; Song, G.; Lin, J.-M. Trends in Analytical Chemistry 2006, 25, 985-995.
(32) Yeh, H. C.; Lin, W. Y. Chemistry (the Chinese Chem. Soc.)2006, 64, 179-190.
(33) Kubo, H.; Tsuda, Y.; Yshimura, Y.; Homma, H.;Nakazawa, H. Analytica Chimica Acta 2003, 494, 49-53.
(34) Lu, J.; Lau, C.; Morizono, M.; Ohta, K.; Kai, M. Analytical Chemistry. 2001, 73, 5979-5983.
(35) Huang, Y.; Zhang, Z.; Zhang, D.; Lu. J. Fresenius Journal of Analytical Chemistry 2000, 368, 429-431.
(36) Diaz, A. N.; Garcia, J. A. G. Analytical Chemistry 1994, 66, 988-993.
(37) Zhou, H.; Xu, H.; Wan, G. H.; Duan, C. F.; Cui, H. Talanta 2004, 64, 467-477.
(38) Li, Y. H.; Tang, Y. H.; Yao, H.; Fu, J. M. Luminescence 2003, 18, 313-317.
(39) Kubo, H.; Toriba, A. Analytica Chimica Acta 1997, 353, 345.
(40) Du, J.; Li, Y.; Lu, J. Talanta 2001, 55, 1055.
(41) Song, Z.; Hou, S. Analytica Chimica Acta 2003, 488, 71.
(42) Jian, L. Luminescence 2001, 16, 281-283.
(43) Du, J.; Li, Y.; Lu, J. Talanta 2002, 57, 661-665.
(44) Kubo, H.; Saitoh, M.; Murase, S.; Inomata, T.;Yoshimura, Y.; Nakazawa, H. Analytica Chimica Acta 1999, 389, 89.
(45) Giokas, D. L.; Vlessidis, A. G.; Evmiridis, N. P. Analytica Chimica Acta 2007, 589, 59-65.
(46) Huang, T. Y.; Lin, W. Y.; Luminescence, 2010, DOI 10.1002/bio.1193
(47) Li, B.; Deng, Q.; Guo, L.; Zhang, Z. Microchimica Acta 2008, 162, 189-198.
(48) Song, Z.; Hou, S. Analytica Chimica Acta 2003, 488, 71-79.
(49) Hansen, J. R. a. E. H. Analytica Chimica Acta 1975, 78, 145-157.
(50) Costin, J. W.; Francis, P. S.; Lewis, S. W. Analytica Chimica Acta 2003, 480, 67-77.
(51) Dapkevicius, A.; van Beek, T. A.; Niederlander, H. A. G.; de Groot, A. Analytical Chemistry 1999, 71, 736-740
(52) Kiba, N.; Tachibana, M.; Tani, K.; Miwa, T. Analytica Chimica Acta 1998, 375, 65-70.
(53) Kiba, N.; Miwa, T.; Tachibana, M.; Tani, K.; Koizumi, H. Analytical Chemistry 2002, 74, 1269-1274.
(54) Qin, W. Analytical Letters. 2002, 35, 2207-2220.
(55) Douglas A. Skoog, F. J. H., Timothy A. Nieman In principle of instrumental
analysis, 5th ed.; Harcourt Brace college publishers, 1998, pp 704 - 705.
(56) Ren, A.; Abasq M. L.; Hauchard, D.; Hapiot, P. Analytical Chemistry 2010, 82, 8703-8710
(57) Xu, H.; Duan, C. F.; Lai, C. Z.; Lian, M.; Zhang, Z. F.; Liu1, L. J.; Cui1, H.
Luminescence, 2006, 21, 195-201
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38451-
dc.description.abstractLuminol是一種常用的化學發光試劑,在鹼性環境下與氧化劑及催化劑作用,產生425 nm左右的放光。本研究中,以KIO4 作為氧化劑、Zn2+ 作為催化劑建立一個luminol - Zn2+ - KIO4 化學發光系統,並利用流動注入分析法( flow-injection analysis )偵測此系統產生的光譜訊號。我們探討pH值、反應物(luminol、Zn2+、KIO4)濃度與混合的方式等因素對訊號強度的影響,並找出系統最佳化條件。系統最佳化條件為:pH = 13.0、[luminol] = 10 μM、[Zn2+] = 400 μM、[KIO4] = 0.5 mM,並且使用雙管流路配置(流速設定在5 mL/min)。
在自由基消滅劑的測試中,我們添加O2・-、1O2 與 ・OH等活性含氧物質( reactive oxygen species, ROS)的消滅劑,結果訊號都有下降的趨勢,推測這些自由基會參與本系統的化學發光反應。
利用此化學發光系統,我們初步篩檢49種生化有機分子,實驗結果顯示含有雙酚(dihydroxybenzene)結構、兒茶酚胺(catecholamine)結構的分子對訊號的抑制程度最大。接著我們對訊號抑制效果最好的十五種分子做深入的檢測,這些分子普遍為常見的抗氧化劑,它們能掃除自由基造成化學發光訊號下降,我們由訊號被抑制的程度推算出這些分子的偵測極限與IC50。如苯二酚化合物中的hydroquinone (偵測極限為2.6 nM,IC50為0.028 μM)、catechol (偵測極限為3.5 nM,IC50為0.034 μM)、resorcinol (偵測極限為133.5 nM,IC50為2.13 μM);兒茶酚胺中的L-dopa (偵測極限為12.9 nM,IC50為0.093 μM)、dopamine (偵測極限為3.8 nM,IC50為0.06 μM)、norepinephrine (偵測極限為28.9 nM,IC50為0.35 μM)、epinephrine (偵測極限為72.1 nM,IC50為1.02 μM);其他的酚類化合物如normetanephrine (偵測極限為28.4 nM,IC50為0.29 μM)、chlorogenic acid (偵測極限為36.6 nM,IC50為0.49 μM)、homovanillic acid (偵測極限為67.9 nM,IC50為1.03 μM)、catechin (偵測極限為49.3 nM,IC50為0.51 μM)、octopamine (偵測極限為63.9 nM,IC50為0.89 μM)、synephrine (偵測極限為95.9 nM,IC50為1.77 μM)、sesamol (偵測極限為82 nM,IC50為1.33 μM);胺基酸中的cysteine (偵測極限為418.1 nM,IC50為3.32 μM)。為了獲得更好的檢測靈敏度,我們進行抑制最佳化實驗,找出對訊號抑制最多的試劑條件,應用在hydroquinone與catechol的偵測上,以此方法獲得了更低的偵測極限值,其偵測極限(LOD)分別為1.13 nM、2.63 nM。
為了了解Zn2+ 在系統中扮演的角色,我們在注入端添加EDTA,意外地發現訊號有增強的現象。我們掃描luminol - Zn2+ - KIO4系統的最大放光波長,發現在425 nm 附近有最大的放光強度,確定本系統的化學發光是由luminol所造成的,沒有新的放光物種產生。將試劑通入氮氣除去溶氧後化學發光訊號減弱約40 %,表示導致化學發光的原因有二種,第一是KIO4與溶氧反應產生活性含氧物質,活性含氧物質氧化luminol導致化學發光;第二是KIO4直接氧化luminol所造成,而且Zn2+ 的添加,能催化這兩種產生放光的途徑,藉此,我們推導出luminol - Zn2+ - KIO4化學發光系統的反應機制。
zh_TW
dc.description.abstractLuminol is a common chemiluminescence(CL)reagent. It emits light at 425 nm. The chemiluminescence which caused by luminol is usually carried out in alkaline solution and in the presence of an oxidant and a catalyst. In this study, we use KIO4 as oxidant and Zn2+ as catalyst to construct a luminol - Zn2+ - KIO4 CL system, utilizing flow-injection analysis to detect the CL signal. The effects of pH, concentration of reagents (luminol, Zn2+, KIO4) and modes of reagent mixing on CL intensity were investigated and optimized. In this system, the optimal conditions are: pH = 13.0, [luminol] = 10 μM, [Zn2+] = 400 μM, [KIO4] = 0.5 mM, double flow channels (flow rate fixed at 5 mL/min).
In the radical-scavenging studies, we added the selective scavengers of reactive oxygen species (ROS), such as O2・-, 1O2 and ・OH scavengers into the reaction system. The result showed a decreasing CL intensity for all scavengers, suggesting that theses radicals participated in the CL reaction.
By using this CL system, we tested 49 biomolecules and organic compounds for their effect on the CL emission. It was found that compounds bearing a dihydroxybenzene and catecholamine structure, exhibited best inhibition on the CL intensity. After that, we selected 15 compounds to investigate in depth their best inhibition on the CL peak. They are common antioxidants, which have an ability to eliminate free radicals, thereby causing a decrease in CL emission. We then calculated the detection limits and IC50 of these antioxidants by measuring their extent of inhibition on the signal. The determination of dihydroxybenzenes such as hydroquinone (LOD: 2.6 nM, IC50: 0.028 μM), catechol (LOD: 3.5 nM, IC50: 0.034 μM), resorcinol (LOD: 133.5 nM, IC50: 2.13 μM), and catecholamines such as L-dopa (LOD: 12.9 nM, IC50: 0.093 μM), dopamine (LOD: 3.8 nM, IC50: 0.06 μM), norepinephrine (LOD: 28.9 nM, IC50: 0.35 μM), epinephrine (LOD: 72.1 nM, IC50: 1.02 μM), and other phenolic compounds such as normetanephrine (LOD: 28.4 nM, IC50: 0.29 μM), chlorogenic acid (LOD: 36.6 nM, IC50: 0.49 μM), homovanillic acid (LOD: 67.9 nM, IC50: 1.03 μM), catechin (LOD: 49.3 nM, IC50: 0.51 μM), octopamine (LOD: 63.9 nM, IC50: 0.89 μM), synephrine (LOD: 95.9 nM, IC50, 1.77 μM), sesamol (LOD: 82 nM,IC50: 1.33 μM), and amino acid - cysteine (LOD: 418.1 nM, IC50: 3.32 μM). In order to attain better sensitivity, we perfomed an inhibition-optimized experiment. By adjustment of the regent concentration, optimal conditions for greatest suppression of signal were obtained, and applied to the determination of hydroquinone and catechol. The detection limits of hydroquinone and catechol were 1.13 nM and 2.63 nM, respectively.
In order to figure out what role Zn2+ plays in CL reaction, EDTA was added in the sample at injection site. We accidentally found that the signal is enhanced. The emission spectrum of luminol - Zn2+ - KIO4 system showed a maximum at 425 nm. So the CL is caused by luminol, not by other emitter. When the dissolved oxygen was removed from the solution by purging with nitrogen, the CL intensity decreased by 40%. This might indicated that two CL pathways are required to account for CL emission. One is that KIO4 interacted with dissolved oxygen in water to produce reactive oxygen species, and the generated ROS may then react with luminol to induce CL emission. The other is that luminol is oxidized by KIO4 directly. Both pathways were catalysed by Zn2+ . Based on these results, we proposed the mechanism of luminol - Zn2+ - KIO4 CL system.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T16:33:58Z (GMT). No. of bitstreams: 1
ntu-100-R98223162-1.pdf: 1739014 bytes, checksum: e41f6eb0354f364d584fb7f196e20c50 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents摘要 I
Abstract III
目錄 V
圖目錄 VIII
表目錄 XIII
1-1 化學發光簡介 1
1-2 化學發光原理 4
1-3 luminol 發光系統介紹 8
1-4 IO4–對luminol化學發光系統之影響 11
1-5 活性含氧物質對luminol化學發光系統之影響 12
1-6 金屬催化增強luminol的化學發光反應 14
1-7 研究動機 16
第二章 實驗材料與儀器介紹 17
2-1 實驗儀器 17
2-2 流動注入分析系統 18
2-2-1 流動注入分析法-簡介 18
2-2-2 流動注入分析法-儀器裝置 19
2-2-3 流動注入分析法-本研究所用的儀器裝置與原理 21
2-3 實驗藥品 27
2-4 溶液的配製 30
第三章 結果與討論 31
3-1 Luminol - Zn2+ - KIO4 發光系統訊號再現性 31
3-2 Luminol - Zn2+ - KIO4 發光系統最佳化 32
3-2-1 試劑與流路/注射配置 32
3-2-2 流速對化學發光的影響 36
3-2-3 各種試劑濃度對化學發光的影響 37
3-2-4 pH值對化學發光的影響 41
3-3 自由基消滅劑對化學發光的影響 42
3-4 Luminol - Zn2+ - KIO4 發光系統之機制探討 47
3-4-1 金屬螯合劑EDTA對化學發光的影響 47
3-4-2 水中溶氧對化學發光的影響 48
3-4-3 機制推導 50
3-5 Luminol - Zn2+ - KIO4 發光系統之方法應用 56
3-5-1 生化有機分子測試 56
3-5-2 十五種抗氧化劑的深入檢測 63
3-5-2-1 Hydroquinone 64
3-5-2-2 Catechol 66
3-5-2-3 Resorcinol 68
3-5-2-4 L-dopa 70
3-5-2-5 Dopamine 72
3-5-2-6 Norepinephrine 74
3-5-2-7 Eepinephrine 76
3-5-2-8 Normetanephrine 78
3-5-2-9 Chlorogenic acid 80
3-5-2-10 Catechin 82
3-5-2-11 Homovanillic acid 84
3-5-2-12 Octopamine 86
3-5-2-13 Synephrine 88
3-5-2-14 Sesamol 90
3-5-2-15 Cysteine 92
3-5-2-16 抗氧化劑檢測之結論 94
3-5-3 抑制最佳化 96
3-5-3-1 Hydroquinone的抑制最佳化 96
3-5-3-2 Catechol的抑制最佳化 103
第四章 結論 110
第五章 參考文獻 111
dc.language.isozh-TW
dc.subject兒茶酚胺zh_TW
dc.subject魯米諾zh_TW
dc.subject化學發光zh_TW
dc.subject流動注入分析zh_TW
dc.subject過碘酸鉀zh_TW
dc.subject鋅離子zh_TW
dc.subject苯二酚zh_TW
dc.subjectluminolen
dc.subjectcatecholamineen
dc.subjectdihydroxybenzeneen
dc.subjectZn2+en
dc.subjectpotassium periodateen
dc.subjectflow-injection analysisen
dc.subjectchemiluminescenceen
dc.titleLuminol-Zn2+-KIO4系統之化學發光性質探討與應用zh_TW
dc.titleChemiluminescence of Luminol-Zn2+-KIO4 System and Its Applicationsen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee何國榮(Guor-Rong Ho),劉春櫻(Chuen-Ying Liu)
dc.subject.keyword魯米諾,化學發光,流動注入分析,過碘酸鉀,鋅離子,苯二酚,兒茶酚胺,zh_TW
dc.subject.keywordluminol,chemiluminescence,flow-injection analysis,potassium periodate,Zn2+,dihydroxybenzene,catecholamine,en
dc.relation.page114
dc.rights.note有償授權
dc.date.accepted2011-07-19
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
1.7 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved