Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38422
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳銘憲(Ming-Syan Chen)
dc.contributor.authorYi-Ling Chenen
dc.contributor.author陳奕伶zh_TW
dc.date.accessioned2021-06-13T16:33:06Z-
dc.date.available2005-07-28
dc.date.copyright2005-07-28
dc.date.issued2005
dc.date.submitted2005-07-10
dc.identifier.citation[1] R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large databases. In Proc. of Int’l Conf. on Very Large Data Bases, pages 487–499, Sep. 1994.
[2] A. G. Buchner and M. Mulvenna. Discovery internet marketing intelligence through online analytical web usage mining. Proc. of ACM SIGMOD, 27(4):54–61, Dec. 1998.
[3] L. Chen, S. S. Bhowmick, and L.-T. Chia. Vrules: An effective association-based classifier for videos. In ACM Int’l Workshop on Multimedia Databases month =.
[4] M.-S. Chen, J. Han, and P. S. Yu. Data mining: An overview from database perspective. IEEE Transactions on Knowledge and Data Engineering, 5(1):866–883, Dec. 1996.
[5] W.-T. Chen, Y.-L. Chen, and M.-S. Chen. Mining frequent spatial patterns in image databases with applications to image classification. In Submission of Int’l Conf. on Data Engineering, Jun. 2005.
[6] Y. C. Cheng and S. Y. Chen. Image classification using color, texture and regions. Image and Vision Computing, 21:759–776, 2003.
[7] T.-S. Chua, K.-L. Tan, and B. C. Ooi. Fast signature-based color-spatial image retrieval. In ICMCS, pages 362–369, 1997.
[8] U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurasamy. Advances in Knowledge Discovery and Data Mining. MIT Press, Cambridge, MA, 1996.
[9] Y. Gong, H. Chua, and X. Guo. Image indexing and retrieval based on color histogram. In Int’l Conf. on Multimedia Modeling, pages 115–126, 1995.
[10] J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan Kaufmann, 2000.
[11] W. Hsu, J. Dai, and M. L. Lee. Mining viewpoint patterns in image databases. In Proc. of ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining, pages 553–558, 2003.
[12] J. Huang, S. R. Kumar, and R. Zabih. An Automatic Hierarchical Image Classification Scheme. In Proc. of ACM Multimedia, pages 219–228, 1998.
[13] B. Liu, W. Hsu, and Y. Ma. Integrating classification and association rule mining. In KDD, pages 80–86, 1998.
[14] C. Ordonez and E. Omiecinski. Discovering association rules based on image content. In Proc. of the IEEE Advances in Digital Libraries Conference, 1999.
[15] J. S. Park, M.-S. Chen, and P. S. Yu. Using a hash-based method with transaction trimming for mining association rules. IEEE Transactions on Knowledge and Data
Engineering, 9(5):813–825, 1997.
[16] Y. Rubner, C. Tomasi, and L. J. Guibas. A metric for distributions with applications to image databases. In Int’l Conf. on Computer Vision, 1998.
[17] Y. Rui, T. S. Huang, and S. F. Chang. Image Retrieval: current techniques, promising directions, and open issues. Journal of Visual Communication and Image Representation,
10(1), Mar. 1999.
[18] A. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain. Content-based image retrieval at the end of the early years. IEEE Trans. on Pattern Anal.and Machine Intell., 22(12):1349–1380, Dec. 2000.
[19] J. R. Smith. Integrated spatial and feature image systems: Retrieval, analysis and compression. In Ph. D. thesis, 1997.
[20] M. Szummer and R. Picard. Indoor-outdoor image classification. IEEE Int’l Workshop on Content-based Access of Images and Video Databases, pages 42–51, 1998.
[21] J. Tesic, S. Newsam, and B. S. Manjunath. Mining image datasets using perceptual association rules. In Int’l Conf. of SIAM on Mining Scientific and Engineering Datasets, May 2003.
[22] A. Vailaya, M. A. T. Figueiredo, A. K. Jain, and H.-J. Zhang. Image classification for content-based indexing. IEEE Trans. on Image Processing, 10(1):117–130, Jan. 2001.
[23] Z. Yang and C.-C. J. Kuo. Survey on Image Content Analysis, Indexing, and Retrieval Techniques and Status Report of MPEG-7. Tamkang Journal of Science and
Engineering, 2(3):101–118, 1999.
[24] O. R. Zaiane and J. Han. Multimediaminer: A system prototype for multimedia data mining. In Proc. of ACM SIGMOD, 1998.
[25] O. R. Zaiane, J. Han, and H. Zhu. Mining recurrent items in multimedia with progressive resolution refinement. In Proc. of Int’l Conf. on Data Engineering, page 461, 2000.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38422-
dc.description.abstract在這篇論文中,我們結合了資料探戡和影像處理技術,協助我們找出影像中所隱藏的空間關係與資訊。為了找出這些資訊,我們提出一個影像探戡的架構:空間關聯法則,所謂空間關聯法則是用來描述影像中某個位置的內容與另一個位置的內容存有關聯性,我們提供了演算法來找出這些空間關聯法則。在應用方面,我們將空間關聯法則實作在影像分類上。我們找出自然景物照片中色彩的空間關連性,例用這些關聯法則來做新影像的分類。論文中的實驗結果可以顯示,利用色彩空間關聯法則來分類,準確度可以達到86%。zh_TW
dc.description.abstractIn this paper, we integrate data mining with image processing for discovering spatial relationships in images. We present an image mining framework, Spatial Association Rulemining (SAR), to mine spatial associations located in specific locations of images. A rule in the SAR refers to the occurrences of image content in a pair of spatial locations. The proposed approach is applied to mine color spatial association rules (color-SAR) in landscape scene images so as to demonstrate that the spatial association rules is able to the application of image classification. Our experimental results show that the classification accuracy of 86% can be achieved by the rule-based classifier.en
dc.description.provenanceMade available in DSpace on 2021-06-13T16:33:06Z (GMT). No. of bitstreams: 1
ntu-94-R92921028-1.pdf: 332029 bytes, checksum: 1d08a280922860e555e01120f1495202 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents1 Introduction 6
2 RelatedWork 12
3 Preliminaries 14
3.1 Algorithm Apriori 14
3.2 The Earth Mover's Distance 17
4 Spatial Association Rule 19
4.1 Problem Formulation 19
4.2 Algorithm SAR-Mining 21
5 Application to Image Classification 28
5.1 Extraction of color items 29
5.2 Generation of color-SAR in each class 30
5.3 The image classifier 31
5.3.1 Distance Measurement 31
5.3.2 Classification of An Image 34
6 Experimental Results 37
6.1 Rule-based classifier 37
7 Conclusion 43
dc.language.isoen
dc.subject關連法則zh_TW
dc.subject影像zh_TW
dc.subjectimageen
dc.subjectassociation ruleen
dc.title影像中的空間關聯法則zh_TW
dc.titleMining Spatial Association Rules in Imageen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee呂永和(Yung-Ho Leu),沈錳坤(Man-Kwan Shan)
dc.subject.keyword關連法則,影像,zh_TW
dc.subject.keywordassociation rule,image,en
dc.relation.page44
dc.rights.note有償授權
dc.date.accepted2005-07-11
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
324.25 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved